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ABSTRACT 

Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies 

(NDA) derived Dietary Reference Values (DRVs) for magnesium. The Panel considers that Average 

Requirements (ARs) and Population Reference Intakes (PRIs) for magnesium cannot be derived for adults, 

infants or children, and therefore defines Adequate Intakes (AIs), based on observed intakes in healthy 

populations in the European Union (EU). This approach considers the range of average magnesium intakes 

estimated by EFSA from dietary surveys in children and adults in nine EU countries. For adults, an AI for 

magnesium is set at 350 mg/day for men and 300 mg/day for women. For children aged 1 to < 3 years, an AI for 

magnesium is set at 170 mg/day for both sexes. For children aged 3 to < 10 years, an AI for magnesium is set at 

230 mg/day for both sexes. For children aged 10 to < 18 years, an AI for magnesium is set at 300 mg/day for 

boys and 250 mg/day for girls. For infants aged 7–11 months, an AI for magnesium of 80 mg/day is derived by 

extrapolating upwards from the estimated magnesium intake in exclusively breast-fed infants aged 0–6 months 

and by considering observed average intakes in the few surveys for which data are available. For pregnant and 

lactating women, the Panel considers that there is no evidence for an increased need for magnesium, and the 

same AI is set for them as for non-pregnant, non-lactating women. 
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SUMMARY 

Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition 

and Allergies (NDA) was asked to deliver a Scientific Opinion on Dietary Reference Values (DRVs) 

for the European population, including magnesium. 

Magnesium is an alkaline earth metal. It occurs as the free cation Mg
2+

 in aqueous solutions or as the 

mineral part of a large variety of compounds, including chlorides, carbonates and hydroxides. 

Magnesium is a cofactor of more than 300 enzymatic reactions, acting either on the enzyme itself as a 

structural or catalytic component or on the substrate, especially for reactions involving ATP, which 

make magnesium essential in the intermediary metabolism for the synthesis of carbohydrates, lipids, 

nucleic acids and proteins, as well as for specific actions in various organs in the neuromuscular or 

cardiovascular system. 

Magnesium deficiency can cause hypocalcaemia and hypokalaemia, leading to neurological or cardiac 

symptoms when it is associated with marked hypomagnesaemia. Owing to the widespread 

involvement of magnesium in numerous physiological functions and the metabolic interactions 

between magnesium and other minerals, it is difficult to relate magnesium deficiency to specific 

symptoms. 

Magnesium absorption takes place in the distal intestine, mainly as the ionised form. Percentage 

absorption is generally considered to be 40–50 %, but figures from 10 to 70 % have also been 

reported. Magnesium absorption can be inhibited by phytic acid and phosphate and enhanced by the 

fermentation of soluble dietary fibre, although the physiological relevance of these interactions at 

adequate intakes remains to be established. 

The majority of the body magnesium content is stored in bone (about 60 %) and muscle (about 25 %). 

A small amount is present in the serum, mainly as the free cation. Most cells are able to actively and 

rapidly buffer magnesium loss or accumulation through the involvement of specific magnesium 

transporters. The kidney plays a major role in magnesium homeostasis and maintenance of serum 

concentration. Urinary magnesium excretion is increased by high natriuresis, osmotic load and 

metabolic acidosis, and reduced by metabolic alkalosis, parathyroid hormone and, possibly, calcitonin. 

A large proportion of the magnesium content of faeces stems from unabsorbed magnesium. 

Endogenous magnesium is lost through bile, pancreatic and intestinal juices, and intestinal cells, and 

part of this can be reabsorbed. Magnesium losses through sweat are modest and very variable, 

depending on the techniques used for sweat collection, and losses through menstruation are negligible. 

There is some evidence that urinary magnesium concentration reflects magnesium intake. Urinary, 

faecal, serum and erythrocyte magnesium concentrations have been used for the assessment of 

magnesium status, with serum magnesium concentration being the most frequently used marker. 

However, the Panel considers that the usefulness of serum magnesium concentration as a marker of 

intake or status is questionable and that there are at present no appropriate biomarkers for magnesium 

status that can be used for deriving DRVs for magnesium. 

The Panel notes that a recent pooled analysis of balance studies in adults suggests that zero 

magnesium balance may occur at a magnesium intake of 165 mg/day. The Panel also notes that results 

of some large-scale and long-term prospective observational studies point to an inverse relationship 

between magnesium intake and the risk of diabetes mellitus type 2. 

Foods rich in magnesium are nuts, whole grains and grain products, fish and seafood, several 

vegetables, legumes, berries, banana and some coffee and cocoa beverage preparations. The 

magnesium content of tap/bottled water can make a significant contribution to intake. On the basis of 

data from 13 dietary surveys in nine European Union (EU) countries, dietary intake of magnesium was 

estimated by EFSA using food consumption data from the EFSA Comprehensive European Food 

Consumption Database and composition data from the EFSA Food Composition Database. 
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For both sexes combined, average magnesium intake ranged from 72 to 120 mg/day (25–45 mg/MJ, 

9.2–12.7 mg/kg body weight per day) in infants (< 1 year of age); from 153 to 188 mg/day (35–

45 mg/MJ, 12.7–15.8 mg/kg body weight per day) in children aged 1 to < 3 years; from 184 to 

281 mg/day (28–43 mg/MJ, 7.6–13.0 mg/kg body weight per day) in children aged 3 to < 10 years; 

from 213 to 384 mg/day (28–44 mg/MJ, 4.2–7.7 mg/kg body weight per day) in children aged 10 to 

< 18 years; and from 232 to 439 mg/day (35–51 mg/MJ, 3.4–5.3 mg/kg body weight per day) in adults 

(≥ 18 years). The main food groups contributing to magnesium intake were grains and grain-based 

products, milk and milk products, and coffee, cocoa, tea and infusions. 

Considering all the evidence available, i.e. from balance studies and prospective observational studies, 

the Panel decided to set an Adequate Intake (AI) based on observed intakes in several EU countries. 

For adults of all ages, the Panel proposed to set AIs according to sex. Considering the distribution of 

observed average intakes (males 264–439 mg/day; females 232–357 mg/day), the Panel proposed an 

AI for all adult men over 18 years of 350 mg/day and for all adult women an AI of 300 mg/day, after 

rounding. 

The Panel also decided to set an AI for infants aged 7–11 months and children based on observed 

intakes in several EU countries. For infants aged 7–11 months, an AI in line with the proposal of the 

SCF (1993) of 80 mg/day was set. This value represents, after rounding, the midpoint (78 mg/day) of 

the range between 35 mg/day (magnesium intake estimated by extrapolation using isometric scaling 

from intakes in breast-fed infants aged 0–6 months) and 120 mg/day (highest value of the range of 

observed mean intakes in the EU countries for which data are available). For children aged 1 to < 10 

years, considering the absence of a strong basis for a distinct value according to sex and the 

distribution of observed mean intakes, AIs were set at the midpoint of average intakes (170 mg/day for 

boys and girls aged 1 to < 3 years, and 230 mg/day for boys and girls aged 3 to < 10 years). For 

children aged 10 to < 18 years, considering the rather large differences in magnesium intakes between 

boys and girls, the Panel proposed to set AIs according to sex, and to select the midpoints of average 

intakes as AIs, i.e. 300 mg/day for boys and 250 mg/day for girls. 

Considering that pregnancy induces only a small increase in magnesium requirement, which is 

probably covered by adaptive physiological mechanisms, the Panel considers that the AI for non-

pregnant women also applies to pregnant women. For lactating women, considering that 25 mg/day is 

secreted with breast milk during the first six months of exclusive breastfeeding and that there is the 

possibility of adaptation of magnesium metabolism, at the level of both absorption and elimination, the 

Panel considers that the AI for non-pregnant non-lactating women women also applies to lactating 

women. 
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BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION 

The scientific advice on nutrient intakes is important as the basis of Community action in the field of 

nutrition, for example such advice has in the past been used as the basis of nutrition labelling. The 

Scientific Committee for Food (SCF) report on nutrient and energy intakes for the European 

Community dates from 1993. There is a need to review and, if necessary, to update these earlier 

recommendations to ensure that the Community action in the area of nutrition is underpinned by the 

latest scientific advice. 

In 1993, the SCF adopted an opinion on the nutrient and energy intakes for the European Community.
4
 

The report provided Reference Intakes for energy, certain macronutrients and micronutrients, but it did 

not include certain substances of physiological importance, for example dietary fibre. 

Since then new scientific data have become available for some of the nutrients, and scientific advisory 

bodies in many European Union Member States and in the United States have reported on 

recommended dietary intakes. For a number of nutrients these newly established (national) 

recommendations differ from the reference intakes in the SCF (1993) report. Although there is 

considerable consensus between these newly derived (national) recommendations, differing opinions 

remain on some of the recommendations. Therefore, there is a need to review the existing EU 

Reference Intakes in the light of new scientific evidence, and taking into account the more recently 

reported national recommendations. There is also a need to include dietary components that were not 

covered in the SCF opinion of 1993, such as dietary fibre, and to consider whether it might be 

appropriate to establish reference intakes for other (essential) substances with a physiological effect. 

In this context EFSA is requested to consider the existing Population Reference Intakes for energy, 

micro- and macronutrients and certain other dietary components, to review and complete the SCF 

recommendations, in the light of new evidence, and in addition advise on a Population Reference 

Intake for dietary fibre. 

For communication of nutrition and healthy eating messages to the public it is generally more 

appropriate to express recommendations for the intake of individual nutrients or substances in food-

based terms. In this context EFSA is asked to provide assistance on the translation of nutrient based 

recommendations for a healthy diet into food based recommendations intended for the population as a 

whole. 

TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION 

In accordance with Article 29 (1)(a) and Article 31 of Regulation (EC) No. 178/2002,
5
 the 

Commission requests EFSA to review the existing advice of the Scientific Committee for Food on 

population reference intakes for energy, nutrients and other substances with a nutritional or 

physiological effect in the context of a balanced diet which, when part of an overall healthy lifestyle, 

contribute to good health through optimal nutrition. 

In the first instance EFSA is asked to provide advice on energy, macronutrients and dietary fibre. 

Specifically advice is requested on the following dietary components: 

 Carbohydrates, including sugars; 

 Fats, including saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty 

acids, trans fatty acids; 

                                                      
4 Scientific Committee for Food, 1993. Nutrient and energy intakes for the European Community. Reports of the Scientific 

Committee for Food, 31st series. Food – Science and Technique, European Commission, Luxembourg, 248 pp. 
5 Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general 

principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in 

matters of food safety. OJ L 31, 1.2.2002, p. 1–24. 
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 Protein; 

 Dietary fibre. 

Following on from the first part of the task, EFSA is asked to advise on population reference intakes 

of micronutrients in the diet and, if considered appropriate, other essential substances with a 

nutritional or physiological effect in the context of a balanced diet which, when part of an overall 

healthy lifestyle, contribute to good health through optimal nutrition. 

Finally, EFSA is asked to provide guidance on the translation of nutrient based dietary advice into 

guidance, intended for the European population as a whole, on the contribution of different foods or 

categories of foods to an overall diet that would help to maintain good health through optimal nutrition 

(food-based dietary guidelines). 
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ASSESSMENT 

1. Introduction 

In 1993, the Scientific Committee for Food (SCF, 1993) adopted an opinion on the nutrient and energy 

intakes for the European Community. For magnesium, the SCF did not set a Population Reference 

Intake (PRI) but instead set an Acceptable Range of Intakes for adults, including pregnant and 

lactating women. For children, approximate PRIs were defined on the basis of body weight. 

2. Definition/category 

2.1. Chemistry 

Magnesium (atomic number 12, atomic mass 24.30 Da) is an alkaline earth metal belonging to the 

third period of the periodic table of the elements. It is the eighth most abundant element in the earth’s 

crust and the eleventh most abundant element in the human body. Like calcium, its oxidation state is 

+2 and, owing to its strong reactivity, it does not occur in the native metallic state, but rather as the 

free cation Mg
2+

 in aqueous solution or as the mineral part of a large variety of compounds, including 

chlorides, carbonates and hydroxides. It can react with nitrogen, phosphorus, sulphur and halides; 

however, its bond to protein or other biological molecules tends to be weaker than that of calcium 

(Saris et al., 2000). There are three natural stable isotopes, i.e. 
24

Mg (natural abundance 79 %), 
25

Mg 

(10 %) and 
26

Mg (11 %). 

2.2. Function of magnesium 

2.2.1. Biochemical functions 

Magnesium is a cofactor of more than 300 enzymatic reactions, acting either on the substrate 

(especially for reactions involving ATP, where its binding to the nucleotide induces an adequate 

conformation and helps to weaken the terminal O–P bond of ATP, thereby facilitating the transfer of 

phosphate (Sanders et al., 1999; Rude and Gruber, 2004)) or on the enzyme itself as a structural or 

catalytic component. As ATP utilisation is involved in many metabolic pathways, magnesium is 

essential in the intermediary metabolism for the synthesis of carbohydrates, lipids, nucleic acids and 

proteins, as well as for specific actions in various organs such as the neuromuscular or cardiovascular 

system. Magnesium can interfere with calcium at the membrane level or bind to membrane 

phospholipids, thus modulating membrane permeability and electrical characteristics. Magnesium has 

an impact on bone health through its role in the structure of hydroxyapatite crystals in bone. 

2.2.2. Health consequences of deficiency and excess 

2.2.2.1. Deficiency 

Magnesium deficiency can have many different causes, including renal and gastrointestinal 

dysfunctions; magnesium deficiency can cause hypocalcaemia and hypokalaemia, leading to 

neurological or cardiac symptoms when it is associated with marked hypomagnesaemia 

(< 0.5 mmol/L). Owing to the widespread involvement of magnesium in numerous physiological 

functions and the metabolic interactions between magnesium and other minerals, it is difficult to relate 

magnesium deficiency to specific symptoms such as neuromuscular irritability, muscle tremors and 

cramps, fasciculation, wasting and weakness, restless leg syndrome, fibromyalgia, i.e. conditions 

where the use of magnesium supplementation has led to inconsistent results (Brown et al., 2012). 

2.2.2.2. Excess 

A Tolerable Upper Intake Level (UL) was determined by the SCF (2001) based on studies in which 

mild diarrhoea occurred after ingestion of magnesium supplements and in which information on 

magnesium intake from foods and beverages was not available. A No Observed Adverse Effect Level 

(NOAEL) of 250 mg/day was derived and, using an uncertainty factor of 1, a UL of 250 mg/day was 

established for adults, including pregnant and lactating women, and children from 4 years of age and 
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older. Owing to a lack of data, a UL could not be established for children aged 1–3 years. The UL was 

established for readily dissociable magnesium salts (e.g. chloride, sulphate, aspartate, lactate) and 

compounds such as magnesium oxide in nutritional supplements or water, or added to foods and 

beverages, but does not include magnesium normally present in foods and beverages. 

2.3. Physiology and metabolism 

2.3.1. Intestinal absorption 

Magnesium absorption takes place in the distal small intestine, mainly in ionised form through a 

paracellular process via tight junctions and is driven by electrochemical gradients and solvent drag. 

Saturable transcellular absorption seems to be significant only at low dietary intakes. At usual intakes, 

magnesium absorption is only loosely regulated; percentage absorption is generally considered to be 

40–50 %, but figures from 10 to 70 % have also been reported. The fractional absorption of 

magnesium decreases with increasing magnesium intake, which makes the comparison between 

studies difficult (Sabatier et al., 2003a). Magnesium absorption can be inhibited by phytic acid and 

phosphate and enhanced by the fermentation of soluble dietary fibre, although the physiological 

relevance of these interactions at intakes considered to be adequate remains to be established. 

2.3.2. Transport in blood 

Approximately 0.3 % of body magnesium is in the serum, as free cations (about 54 %), which is the 

bioactive form, as a protein-bound form (about 33 %, mainly to albumin (75 %)) and as anion 

complexes (about 13 %) (Elin, 1987). Magnesium concentrations in blood cells are higher than in the 

serum: eight times in reticulocytes, three times in red blood cells. 

2.3.3. Distribution to tissues 

Magnesium is approximately equally distributed in bone and soft tissues, less than 1 % being present 

in blood compartments. Cellular magnesium concentrations are constantly in the range of 17–

20 mmol/L (Swaminathan, 2003), despite rapid movements across cell membranes through multiple 

carriers and channels. Intracellular concentrations have been observed to decrease linearly with 

increasing age, without parallel changes in plasma magnesium concentration (Barbagallo et al., 2000; 

Barbagallo et al., 2009). 

The most important transport system to tissues appears to be the transient receptor potential 

melastatin 7 (TRPM7), associated with cell proliferation or apoptosis; TRPM7, which is also 

permeable to calcium, is negatively regulated by intracellular magnesium and magnesium–nucleotide 

complexes (Romani, 2011; Park et al., 2014). TRPM6, functioning with TRPM7 or independently, is 

specifically expressed in the colon and distal renal tubule, where it plays a role in the reabsorption of 

magnesium (Woudenberg-Vrenken et al., 2009; Romani, 2011). Some other non-specific transporters 

are also involved in magnesium transfer, such as claudins, MagT1, SLC41, ACDP, NIPA and 

Huntingtin across cell membranes, Mrs2 across mitochondrial membranes and MMgt across Golgi 

membranes (Romani, 2011). As shown in in vitro studies, through the action of magnesium 

transporters enabling large magnesium fluxes, most cells are able to actively and rapidly buffer 

magnesium loss or accumulation (Romani, 2011). In the whole body, compartmental analysis using 

stable isotopes showed the existence of at least two major extraplasma compartments: the first 

compartment represents 80 % of the rapidly exchangeable pool with an exchange rate of 48 mg/hour; 

the second pool has a faster exchange rate of 179 mg/hour; the sum of these rapidly exchangeable 

compartments amounts to around 25 % of the magnesium body pool (Sabatier et al., 2003b). 

2.3.4. Storage 

Total body magnesium content in a healthy adult is around 20–28 g (Rude, 2014). Of this, about 60 % 

is in bone (Swaminathan, 2003; Musso, 2009), either strongly bound to apatite, where it is difficult to 

mobilise, or loosely adsorbed at the surface of mineral crystals, where it can be easily mobilised in 

response to variation in dietary supply (Laires et al., 2004). About 25 % of body magnesium is in 
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muscle, where mitochondria are considered to be the intracellular storage site (Kubota et al., 2005; 

Wolf and Trapani, 2008). 

2.3.5. Elimination 

2.3.5.1. Urine 

The kidney plays a major role in magnesium homeostasis and maintenance of serum concentrations. 

Around 80 % of serum magnesium is ultrafiltrable through the glomerulus, but only around 3 % of the 

filtered fraction appears in the urine, owing to an efficient reabsorption taking place mainly (60–70 %) 

in the thick ascending loop of Henle. This transport is directly related to sodium chloride reabsorption 

and the positive luminal voltage in this segment. The main stimuli that increase urinary magnesium 

excretion are high natriuresis, osmotic load and metabolic acidosis; those that reduce it are metabolic 

alkalosis, parathyroid hormone and, possibly, calcitonin (Musso, 2009). The remaining part of the 

reabsorption takes place in the distal convoluted tubule via an active transcellular mechanism that 

finally controls the amount excreted in the urine (Dai et al., 2001). 

2.3.5.2. Faeces 

A large proportion of the magnesium content of faeces stems from unabsorbed magnesium 

(Lakshmanan et al., 1984). The endogenous routes of elimination of absorbed magnesium through the 

digestive tract are bile, pancreatic and intestinal juices, and intestinal cells; part of these endogenous 

losses can be reabsorbed (Swaminathan, 2003). Using stable isotopes, endogenous faecal excretion has 

been determined to be 49 ± 11 mg/day in six healthy men aged 26–41 years (Sabatier et al., 2003b), 

around 15 mg/day (0.1–0.9 mg/kg body weight per day) in 9- to 14-year-old boys and girls (Abrams et 

al., 1997) and from 4.7 to 21.7 mg/day in five girls aged 12–14 years, without influence of calcium 

intake (Sojka et al., 1997).  

From a compilation of balance studies in adults (Hunt and Johnson (2006); see Section 5.2.1) basal 

urinary and faecal losses may be deduced as losses at zero intake; these amounted to around 

20 mg/day (around 0.31 mg/kg body weight per day). 

2.3.5.3. Skin and sweat 

Reported sweat magnesium concentrations are very variable, ranging from 3 to 60 mg/L depending on 

the environment, with a hot and humid environment associated with the highest losses (Nielsen and 

Lukaski, 2006). After 24-hour exposure to 37 °C, sweat losses amounted to 25 % of the total daily 

magnesium loss (Consolazio et al., 1963). Acclimation may reduce sweat magnesium concentrations 

by around 40 % (Chinevere et al., 2008), although this finding may have been due to technical issues 

rather than an adaptive physiological process (Ely et al., 2013). Costa et al. (1969) measured during 

exercise a sweat magnesium concentration of around 15 µg/g. During exercise in a hot environment 

(27 °C), Beller et al. (1975) determined the magnesium concentration of sweat to range from 1.6 to 

5.4 mg/L. Using a different technique for collecting the totality of sweat, Shirreffs and Maughan 

(1997) measured a concentration of 12.2 ± 12.2 mg/L during four repeated trials in five healthy young 

men and women. Montain et al. (2007) determined a sweat magnesium concentration of 

1.3 ± 0.6 mg/L in seven heat-acclimated subjects (six males, one female) completing several hours of 

treadmill exercise at 27 °C. 

In 7- to 9-year-old boys involved in sedentary activities in a metabolic unit, magnesium total body 

sweat loss was very variable but also very low, ranging from 16 to 300 µg/day, with a mean of 

115 µg/day. Mean and maximum loss represented only 0.05 and 0.13 %, respectively, of the intake 

(range 179–300 mg/day) (Harrison et al., 1976). Daily loss through sweat was found to be around 

2 mg/day (0.6 % of the total output) in six men (McDonald and Margen, 1979). In six healthy women 

aged 27 ± 4 years, a whole-body magnesium loss of 35 ± 13 mg/day was measured; in this experiment, 

a patch technique was shown to overestimate magnesium sweat loss by 3.6 times (Palacios et al., 

2003). Whole-body sweat magnesium concentration was 9.8 ± 4.8 mg/L for seven men and women 
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exercising for 90 minutes at 30°C, the patch technique overestimating this value by 48 % (Baker et al., 

2011). 

Hunt and Johnson (2006) reported on whole-body surface losses of magnesium in 11 young men. 

Subjects wore cotton suits for 48 hours, after which time their skin was rinsed with deionised water. 

Whole-body surface losses of 4.1 mg/day were measured and considered to be negligible. 

The Panel notes that very different figures have been reported for magnesium sweat losses, which can 

be at least partially explained by different techniques for sweat collection; the highest values are 

reported after intense exercise and/or in a hot environment. At moderate physical activity performed 

around thermoneutrality, the Panel considers that magnesium losses through sweat are likely to be 

modest, in the range of 1–5 mg/day, on the basis of a daily sweat volume of around 0.5 L/day 

(Shirreffs and Maughan, 2005; Subudhi et al., 2005). 

2.3.5.4. Menses 

Hunt and Schofield (1969) measured menstrual magnesium losses in five women (20–40 years of 

age); for the whole menstrual period, these varied from 2 ± 1 mg to 7 ± 5 mg in different experimental 

settings. On a daily basis, this loss appears to be marginal. Hunt and Johnson (2006) reported on 

menstrual magnesium losses amounting to 2.3 mg/day, with a range of 0.3–6.5 mg/day, although the 

source of these data is unclear. Considering a magnesium concentration in whole blood of around 35–

40 mg/L in healthy women in the control group (Abdulsahib, 2011) and the volume of blood loss 

(median 18–30 mL per menstrual period (Hallberg et al., 1966; Harvey et al., 2005)), a median 

magnesium loss of around 0.6–1.2 mg/menstrual period can be calculated. 

The Panel considers that magnesium losses through menstruation in women are negligible. 

2.3.5.5. Breast milk 

Two comprehensive literature searches were performed on breast milk magnesium concentrations 

(periods January 1990 to October 2011 (Brown et al., 2012) and October 2010 to January 2014 

(LASER Analytica, 2014)). These searches identified 16 studies on magnesium concentration in breast 

milk of mothers of term infants, one of which was a review (Dorea, 2000). Studies not yet considered 

in the review by Dorea (2000) are listed in Appendix A. 

The studies report cross-sectional sample data from 1–365 days of lactation. Mean magnesium 

concentration from all breast milk studies ranged between 23 and 35 mg/L, in line with the conclusion 

of the review by Dorea (2000), where a median value of 31 mg/L from a range of 15 to 64 mg/L is 

provided. Dorea (2000) indicated that 75 % of reported mean magnesium concentrations in breast milk 

were below 35 mg/L. Variation is probably due to different analytical techniques employed within 

studies and differences in dietary patterns between countries (Parr et al., 1991). 

For the studies listed in Appendix A, there was no clear correlation between stage of lactation and 

breast milk magnesium concentration. Hunt et al. (2005) found that there was a relatively wide 

variation between subjects at a given stage of lactation. 

Dengel et al. (1994) provided a controlled diet (218 mg/day) to six lactating, six non-lactating and 

seven never-pregnant women; from measurement of magnesium concentration in breast milk 

(33.3 ± 0.2 mg/L) and estimation of infant’s intake by test weighing, it was concluded that 

25.2 ± 1.5 mg/day of magnesium was provided to the infant via breast milk. 

The Panel considers that the magnesium concentration of mature human milk is 31 mg/L. Based on a 

mean milk transfer of 0.8 L/day (Butte et al., 2002; FAO/WHO/UNU, 2004; EFSA NDA Panel, 2009) 

and a concentration of magnesium in mature breast milk of 31 mg/L, a secretion of 25 mg/day of 

magnesium in breast milk is estimated during the first six months of lactation. 
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2.3.6. Interaction with other nutrients 

On the basis of physiology, metabolism and biochemistry, many interactions of magnesium with other 

minerals, vitamins or substances present in foods can be suspected, some of which have already been 

mentioned; most of these interactions have been the subject of a very limited number of studies, 

frequently with a high risk of bias (Brown et al., 2012). Balance studies performed either in children or 

in adults did not detect an interaction between magnesium and calcium balances (Greger et al., 1978; 

Spencer et al., 1994; Andon et al., 1996; Abrams et al., 1997; Milne and Nielsen, 2000; Klevay and 

Milne, 2002). However, in two studies, calcium balance was significantly higher under conditions of 

negative magnesium balance (at magnesium intakes of 107 and 118 mg/day) than with a positive 

magnesium balance (at magnesium intakes of 318 and 327 mg/day) (Nielsen, 2004; Nielsen et al., 

2007). An intake of 53 mg zinc/day over 90 days can decrease magnesium balance (Nielsen and 

Milne, 2004).  

There are some studies indicating a relationship with protein intake, possibly through increased 

apparent magnesium absorption. For example, in boys aged 13–14 years, Schwartz et al. (1973) 

showed that zero magnesium balance was obtained with an intake of 4.6 mg/kg body weight per day 

for a high-protein diet (265 mg nitrogen/kg body weight per day, i.e. 1.65 g protein/kg body weight 

per day) and with an intake of 7.6 mg/kg body weight per day for a low-protein diet (123 mg 

nitrogen/kg body weight per day, i.e. 0.77 g protein/kg body weight per day
6
) (see Appendix H). The 

balance study of Wisker et al. (1991) showed that percentage faecal magnesium excretion and 

balances differed significantly between low-fibre and high-fibre diets containing adequate amounts of 

protein; in the study of Kelsay and Prather (1983) there was no clear effect of diets low and high in 

fibre and oxalic acid on magnesium balances.  

Manganese shares physical properties with magnesium that enable it to be interchangeable with 

magnesium in enzymatic phosphate transfer reactions and it has been used as a probe to study the role 

of magnesium in these processes, particularly in energy metabolism. The relevance of this inter-

relationship to human dietary requirements is uncertain, but it is noteworthy that pigs fed 25 % of the 

recommended intake of magnesium had an increased incidence of cardiac changes and sudden death 

(Miller et al., 2000). 

The Panel considers that data on interactions between magnesium and other minerals, protein or fibre 

are limited and cannot be used for setting Dietary Reference Values (DRVs) for magnesium. 

2.4. Biomarkers 

For the assessment of magnesium status, the concentrations of magnesium in urine, faeces, serum and 

erythrocytes have been measured. Witkowski et al. (2011) assessed methods for determining 

magnesium status in humans and undertook meta-analyses. This systematic review included a total of 

27 studies (randomised controlled trials, controlled trials, depletion–repletion studies or depletion-only 

studies). However, conclusions about the responsiveness of the identified relevant biomarkers and 

type, dose or length of supplementation were not possible and there was a high degree of 

heterogeneity between studies. 

2.4.1. Serum/plasma magnesium concentration 

The sensitivity of serum/plasma magnesium concentration to magnesium intake is low. Combining 

data from 18 supplementation arms (doses of 197 mg/day to 23 mg/kg body weight per day for 3–52 

weeks) and four depletion–repletion or depletion-only studies with 322 participants, Witkowski et al. 

(2011) showed a significant response of serum/plasma magnesium concentration to magnesium intake 

for all studies. However, the depletion–repletion or depletion-only studies did not reveal changes in 

serum/plasma magnesium concentration in response to changes in magnesium intake. Others have 

noted a lack of association between magnesium intake via self-selected diets and plasma magnesium 

                                                      
6 The PRI for protein for boys aged 13 years is 0.9 g/kg body weight per day and it is 0.89 g/kg body weight per day for 

boys aged 14 years (EFSA NDA Panel, 2012).  
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concentration (Lakshmanan et al., 1984). In the study of Misialek et al. (2013), when stratifying for 

serum magnesium concentration and relating this to magnesium intake, the quintiles of serum 

magnesium concentration correspond to similar average magnesium intakes, i.e. from 247 to 

258 mg/day, whereas the quintiles of dietary intake range from < 181 mg/day to ≥ 320 mg/day. 

Serum magnesium concentration remains within a narrow range. Based on data from the US National 

Health and Nutrition Examination Survey I (5
th
 and 95

th
 percentiles), Lowenstein and Stanton (1986) 

have suggested that values below 0.75 mmol/L may indicate magnesium deficiency and values above 

0.96 mmol/L may indicate excessive intakes. However, it has also been suggested that a serum 

magnesium concentration within this range cannot totally rule out the possibility of magnesium 

deficiency (Arnaud, 2008). Serum magnesium concentration remains constant with increasing age 

(Barbagallo et al., 2009). 

Thus, despite serum/plasma magnesium concentration being the most frequently used biomarker for 

magnesium, the Panel considers that the usefulness of serum/plasma magnesium concentration as a 

marker of intake or status is questionable. 

Theoretically, the concentration of ionised magnesium in plasma, serum or blood would be a better 

marker of functional magnesium. However, the information is limited and the few studies available 

did not indicate that ionised magnesium concentration changes in response to changes in magnesium 

intake (Durlach et al., 2002; Witkowski et al., 2011). 

2.4.2. Red blood cell magnesium concentration 

Erythrocytes contain a high concentration of magnesium (2.3 ± 0.24 mmol/L of packed cells; ionised 

magnesium 0.2 ± 0.2 mmol/L of cell water (Millart et al., 1995)), which is required for ATP utilisation 

and some other metabolic functions. The relationship between magnesium intake and red blood cell 

magnesium concentration has been described as weak (Lakshmanan et al., 1984). Several weeks of 

low magnesium intake are needed for red blood cell magnesium concentration to decrease, so that this 

marker may reflect medium-term magnesium status. 

Compared with red blood cell magnesium concentration, magnesium concentration in platelets or 

lymphocytes may better reflect muscle and tissue concentrations (Arnaud, 2008). However, 

Witkowski et al. (2011) point out the paucity of available information in humans. 

2.4.3. Urinary magnesium excretion 

Magnesium intake (duplicate diet analysis of self-selected diets) and urinary magnesium concentration 

have been found to be correlated (r = 0.45) (Lakshmanan et al., 1984). According to Witkowski et al. 

(2011), the combination of data from 15 supplementation arms (with doses between 200 mg 

magnesium given once and 23 mg/kg body weight per day given for 52 weeks) and three depletion–

repletion or depletion-only studies including 363 subjects revealed a significant response of urinary 

magnesium excretion to a change in magnesium intake, although there was considerable heterogeneity 

between studies. The authors stressed that the low number of studies with few subjects per study 

precludes conclusions to be drawn about potential relations between biomarker responsiveness and 

type, dose or length of supplementation. Moreover, magnesium intake from diet alone is not reported 

in all supplementation studies. 

2.4.4. Other potential biomarkers 

The magnesium loading test has been proposed as a marker of magnesium status: when 24-hour 

urinary excretion of magnesium after a magnesium load is decreased, this is interpreted as an indicator 

of magnesium deficiency; however, there is no standardised protocol (Arnaud, 2008) and no 

consensus on the usefulness of the test (Elin, 2011; Günther, 2011). Similarly, hair and nail 

magnesium concentrations are difficult to interpret, as the relationship with intake, deficiency or 

excess is still unclear (Arnaud, 2008). 
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Tissue magnesium concentrations (e.g. muscle) require invasive techniques and have not been 

frequently measured in human studies; non-invasive techniques such as neutron activation measuring 

magnesium in hand bones still require validation in clinical studies (Aslam et al., 2008). 

Although magnesium is the cofactor of many enzymes, no functional biomarker has been identified to 

date; however, fasting C-peptide and plasma insulin concentrations have been proposed as possible 

markers following a study using a dose of supplemental magnesium above the UL (Chacko et al., 

2011). The Panel notes the lack of specificity of these parameters for magnesium status. 

2.4.5. Conclusions on biomarkers of intake and status 

Reviews on biomarkers of magnesium intake or status generally conclude that all the proposed 

markers have limitations (Elin, 1987, 1991; Franz, 2004; Arnaud, 2008; Witkowski et al., 2011). The 

Panel considers that there are at present no appropriate biomarkers for magnesium status. The Panel 

also considers that the suitability of urinary magnesium excretion as a marker of intake requires 

confirmation in well-designed studies. 

2.5. Effects of genotype 

From twin studies, heritability of magnesium control appears to be limited (only 27 % of the variance 

may be genetically determined) (Hunter et al., 2002) and the underlying genetic control system might 

be complex (Henrotte et al., 1990). Several genetic disorders of magnesium homeostasis have been 

characterised in a limited number of affected individuals (Weber et al., 2001; Schlingmann et al., 

2004). Genome-wide association studies have identified several loci that influence serum magnesium 

concentrations (Meyer et al., 2010). Some common genetic variants of TRPM6 and seven genes have 

been associated with a higher risk of diabetes mellitus type 2 when magnesium intake is below 

250 mg/day (Song et al., 2009), but this has not been confirmed in a large-scale study combining the 

data from 15 prospective cohorts (Hruby et al., 2013). The Panel considers that there is currently no 

basis for taking into account the information on genotypes for the setting of DRVs for magnesium. 

3. Dietary sources and intake data 

3.1. Dietary sources 

Foods rich in magnesium are nuts, whole grains and grain products, fish and seafood, several 

vegetables, legumes, berries, banana and some coffee and cocoa beverage preparations. The 

magnesium content of tap/bottled water can make a significant contribution to intake. 

Currently, magnesium as magnesium acetate, magnesium carbonate, magnesium chloride, magnesium 

salts of citric acid, magnesium gluconate, magnesium glycerophosphate, magnesium salts of 

orthophosphoric acid, magnesium lactate, magnesium hydroxide, magnesium oxide, magnesium 

potassium citrate and magnesium sulphate may be added to both foods
7
 and food supplements,

8
 

whereas magnesium L-ascorbate, magnesium bisglycinate, magnesium L-lysinate, magnesium malate, 

magnesium L-pidolate, magnesium pyruvate, magnesium succinate, magnesium taurate and 

magnesium acetyl taurate may be added to food supplements only.
6
 The magnesium content of infant 

and follow-on formulae
9
 and the maximum magnesium content of processed cereal-based foods and 

baby foods for infants and young children
10

 is regulated. 

                                                      
7 Regulation No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins 

and minerals and of certain other substances to foods. OJ L 404, 30.12.2006, p. 26. 
8 Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of 

the Member States relating to food supplements. OJ L 183, 12.7.2002, p. 51. 
9 Commission Directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending 

Directive 1999/21/EC. OJ L 401, 30.12.2006, p. 1. 
10 Commission Directive 2006/125/EC of 5 December 2006 on processed cereal-based foods and baby foods for infants and 

young children. OJ L 339, 6.12.2006, p. 16. 
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3.2. Dietary intake 

EFSA estimated dietary intake of magnesium from food consumption data from the EFSA 

Comprehensive European Food Consumption Database (EFSA, 2011b), classified according to the 

food classification and description system FoodEx2 (EFSA, 2011a). Food consumption data from 13 

dietary surveys from nine European Union (EU) countries (Finland, France, Germany, Ireland, Italy, 

Latvia, the Netherlands, Sweden and the UK) were used. The data covered all age groups from infants 

to adults aged 75 years and older (Appendix B). 

Nutrient composition data for magnesium were derived from the EFSA Nutrient Composition 

Database (Roe et al., 2013). Food composition information from Finland, France, Germany, Italy, the 

Netherlands, Sweden and the UK was used to calculate magnesium intake in these countries, assuming 

that the best intake estimate would be obtained when both the consumption data and the composition 

data are from the same country. For magnesium intake estimates for Ireland and Latvia, food 

composition data from the UK and Germany, respectively, were used, because no specific composition 

data from these countries were available. In the event of missing values in a food composition 

database, data providers had been allowed to borrow values from another country’s database. The 

amount of borrowed magnesium values in the seven composition databases used varied between 14 % 

and 91 %. A magnesium value was missing for all included countries for 673 consumed food items, 

for which imputation of missing composition values was undertaken by EFSA. Magnesium intake 

calculations were performed only on subjects with at least two reporting days. EFSA intake estimates 

are based on the consumption of foods, either fortified or not (i.e. without consideration of dietary 

supplements). 

Food consumption data of infants (aged 1 to < 12 months in the Italian INRAN-SCAI survey, 4 to 

< 12 months in the UK DNSIYC survey, 6 months in the Finnish DIPP study and 6 to < 12 months in 

the German VELS survey, for full names of all surveys, see Abbreviations) were provided by four 

studies. The consumption of human milk was taken into account if the amount of human milk 

consumed (Italian INRAN-SCAI survey and UK DNSIYC survey) or the number of breast milk 

consumption events (German VELS survey) were reported. In the case of the Italian INRAN-SCAI 

survey, the data provider had estimated the human milk consumption prior to submitting the data to 

EFSA based on the number of eating occasions using standard portions per eating occasion. In the 

Finnish DIPP study, only the information “breast fed infants” was available, but without any 

indication of the number of breast milk consumption events or the amount of breast milk consumed 

per event. For the German VELS study, the total amount of breast milk was calculated based on the 

observations by Paul et al. (1988) on breast milk consumption during one eating occasion at different 

ages, i.e. the amount of breast milk consumed on one eating occasion was set to 135 g/eating occasion 

for infants aged 6–7 months and to 100 g/eating occasion for infants aged 8–12 months. The Panel 

notes the limitations in the methods used for assessing breast milk consumption in infants (Appendices 

C and D) and related uncertainties in the intake estimates for infants. 

Magnesium intake was calculated in mg/day, mg/MJ (Appendices C and D) and mg/kg body weight 

per day for males and females. For both sexes combined, average magnesium intake ranged from 72 to 

120 mg/day (25–45 mg/MJ, 9.2–12.7 mg/kg body weight per day) in infants (< 1 year of age, four 

surveys); from 153 to 188 mg/day (35–45 mg/MJ, 12.7–15.8 mg/kg body weight per day) in children 

aged 1 to < 3 years (five surveys); from 184 to 281 mg/day (28–43 mg/MJ, 7.6–13.0 mg/kg body 

weight per day) in children aged 3 to < 10 years (seven surveys); from 213 to 384 mg/day (28–

44 mg/MJ, 4.2–7.7 mg/kg body weight per day) in children aged 10 to < 18 years (seven surveys); and 

from 232 to 439 mg/day (35–51 mg/MJ, 3.4–5.3 mg/kg body weight per day) in adults of both sexes 

(≥ 18 years, eight surveys). Average daily intake (but not energy-adjusted intake) was, in most cases, 

slightly higher in males (Appendix C) than in females (Appendix D), mainly owing to larger quantities 

of food consumed per day. 

The main food groups contributing to magnesium intake were grains and grain-based products (up to 

20–40 % in all groups except infants), milk and dairy products (up to about 10–30 % of the total 
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magnesium intake in children and less in older age classes) and coffee, cocoa, tea and infusions (up to 

about 20 % in adults) (see Appendices E and F). Differences in the main contributors to magnesium 

intake between males and females were small. 

EFSA’s magnesium intake estimates in mg/day were compared with published intake values, where 

available, from the same survey and dataset and the same age class, using the German EsKiMo and 

VELS surveys in children (Kersting and Clausen, 2003; Mensink et al., 2007), the DIPP study in 

Finnish children (Kyttälä et al., 2008; Kyttälä et al., 2010), the study in Finnish adolescents (Hoppu et 

al., 2010), the French INCA2 survey (Afssa, 2009), the Irish NANS (IUNA, 2011), the Finnish 

FINDIET 2012 Survey (Helldán et al., 2013), the Italian INRAN-SCAI survey (Sette et al., 2011), the 

Dutch National Food Consumption Survey (van Rossum et al., 2011), the Swedish national survey 

Riksmaten (Amcoff et al., 2012), the UK NDNS (Bates et al., 2012) and the DNSIYC-2011 Study in 

UK infants and toddlers (Lennox et al., 2013). EFSA’s intake estimates for the various surveys 

compared with published values are shown in Table 1. Values below 100 % indicate that EFSA’s 

intake estimates are lower than published values and values above 100 % indicate the opposite. 

Table 1:  EFSA’s average magnesium intake estimates, expressed as percentages of published 

intake 

Country % of published intake, range over different age classes in a specific survey 

Finland  93–110 % (DIPP, for ages ≥ 1 year), 105–106 % (Finnish adolescents), 94–97 % (FINDIET 2012)  

France 96–109 % (INCA2) 

Germany 82–86 % (VELS infants), 100–108 % (VELS children), 94–99 % (EsKiMo) 

Ireland  111–120 % (NANS) 

Italy 91 % (INRAN-SCAI, infants and children aged 1 to < 3 years), 104–108 % (children aged 3 to 

< 18 years), 117–121 % (adults) 

Netherlands 96–98 % (Dutch National Food Consumption Survey) 

Sweden 113–119 % (Riksmaten) 

UK  120–123 % (DNSIYC-2011), 108–118 % (NDNS Rolling Programme Years 1–3, for ages ≥ 3 years) 

 

Comparisons had inherent limitations in the case of the UK survey, where published intake values 

covered the first two years of the survey and EFSA data from the UK covered the first three years. In 

the survey in Finnish children aged 10–18 years, published values were for two consecutive days of 

dietary recall, while EFSA data comprised two 48-hour dietary recalls. Likewise, comparisons were 

not optimal for the German EsKiMo study and the Finnish DIPP study, because the published intake 

values included supplement consumption, while the EFSA estimates are based on food consumption 

only. However, according to these publications (Mensink et al., 2007; Kyttälä et al., 2010), 

magnesium supplements were not among the major contributors to magnesium intake in these age 

classes. A comparison could not be undertaken for the Latvian survey or the infants in the Finnish 

DIPP study, as no matching publication was available. The EFSA estimates differed by up to about 

10 % from the published values in Finland, France, Germany and the Netherlands. For infants in the 

German VELS study, the intakes were underestimates of 14–18 %. This is most probably due to 

differences in the composition data used for the intake estimations, because the quantification of breast 

milk consumption was done similarly in the VELS study and in this assessment (Paul et al., 1988; 

Kersting and Clausen, 2003). The estimated Irish intakes were found to be higher by 11–20 % than 

published estimates, which may partly be because data provided on composite dishes were almost 

completely disaggregated to ingredient level, thereby not capturing possible magnesium losses owing 

to processing. EFSA intake estimates were also higher than published magnesium estimates for 

Sweden and the UK, which may partly be related to the high number of composite foods in these 

datasets, for which the national magnesium values for composite foods may have been more accurate 

than values of the somewhat limited list of composite foods in the FoodEx2 classification system. 

Uncertainties in the estimates of all countries may be caused by inaccuracies in mapping food 

consumption data according to the FoodEx2 classification system, analytical errors or errors in the 
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estimation of the concentration in foods in the food composition databases, the use of borrowed 

magnesium values from other countries in the food composition databases and the replacement of 

missing magnesium values by available values for similar foods or food groups in the magnesium 

intake estimation process. These uncertainties may, in principle, lead to estimates of magnesium intake 

that are both too high and too low. It is not possible to conclude which of these intake estimates (i.e. 

the EFSA intake estimate or the published one) would be closer to the actual magnesium intake. 

4. Overview of Dietary Reference Values and recommendations 

4.1. Adults 

The German-speaking countries (D-A-CH, 2015) derived Recommended Intakes (RIs) based on 

results of balance studies (Jones et al., 1967; Marxhall et al., 1976; Lakshmanan et al., 1984; Wisker et 

al., 1991; IOM, 1997) and urinary magnesium excretion before and after magnesium loading in older 

adults (Gullestad et al., 1994). 

Previously, the Nordic countries had set RIs of 350 mg/day for men and 280 mg/day for women. For 

this, evidence from a balance study had been considered to show that a magnesium intake of 

3.4 mg/kg body weight per day resulted in neutral magnesium balance in almost all subjects (Jones et 

al., 1967). For the Nordic Nutrition Recommendations (NNR) 2012, it was considered that the new 

evidence, including a pooled analysis of 27 balance studies (Hunt and Johnson, 2006) pointing to 

neutral magnesium balance at lower intakes than these RIs, does not indicate that the values should be 

changed (Nordic Council of Ministers, 2014). 

The World Health Organization/Food and Agriculture Organization of the United Nations 

(WHO/FAO, 2004) highlighted the uncertainties in previously used approaches to derive magnesium 

requirements. It was also stated that previous estimates by other authorities may have been 

overestimates. Based on magnesium intake on a body weight basis considered by similar committees 

in the USA, the EU and the UK to maintain zero magnesium balance and considering, in particular, 

balance studies enabling the development of an equilibrium (Hunt and Schofield, 1969; Marxhall et 

al., 1976; Mahalko et al., 1983; Andon et al., 1996), Recommended Nutrient Intakes were proposed 

which were denoted as provisional. WHO/FAO (2004) assumed that older adults have a lower 

requirement “as requirements for growth diminish”, but that at the same time absorption efficiency 

probably decreases as well. 

On the basis of data from balance studies (Lakshmanan et al., 1984; Spencer et al., 1994), the French 

Food Safety Agency (Afssa, 2001) determined an Average Requirement (AR) for adults of 

350 mg/day or 5 mg/kg body weight per day. By applying a coefficient of variation (CV) of 10 %, a 

PRI of 6 mg/kg body weight per day was set. 

On the basis of balance studies conducted in men (Greger and Baier, 1983; Lakshmanan et al., 1984; 

Schwartz et al., 1986) and women (Lakshmanan et al., 1984; Wisker et al., 1991), IOM (1997) derived 

Estimated Average Requirements (EARs) of 330 mg/day for men and 255 mg/day for women aged 19 

to 30 years. Applying a CV of 10 % to these EARs resulted in Recommended Dietary Allowances 

(RDAs) of 400 and 310 mg/day for men and women, respectively. For men aged 31–50 years, balance 

studies of Kelsay et al. (1979); Kelsay and Prather (1983); Mahalko et al. (1983); Lakshmanan et al. 

(1984) and Spencer et al. (1994) were considered. As there were more instances of negative balance in 

the intake range of 300–350 mg/day for subjects in this age range, the EAR was set at a slightly higher 

amount, i.e. at 350 mg/day. For men aged 51–70 years, the aforementioned balance studies plus one 

study in men with a mean age of 53 ± 5 years were considered (Schwartz et al., 1984) and the same 

EAR of 350 mg/day was derived. For women aged 31–50 and 51–70 years, the EAR was raised to 

265 mg/day based on the study by Lakshmanan et al. (1984) and considering the slight increase for 

men of these age ranges compared with younger men. RDAs of 420 and 320 mg/day were derived for 

men and women aged 31–70 years, respectively. For adults over 70 years of age, results from balance 

studies were not available and results from magnesium tolerance tests and red blood cell magnesium 
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concentrations were considered. Given the uncertainty of these markers as indicators of magnesium 

requirement and the lack of balance studies for older adults, it was decided that the EAR and the RDA 

for adults aged 31–70 years would also be retained for this age group. 

The SCF (1993) noted that results of balance studies are difficult to interpret owing to methodological 

limitations in some studies, and to a long time to achieve equilibrium and the potential for 

physiological adaptations to low magnesium intakes (Marxhall et al., 1976; Seelig, 1982; Schwartz et 

al., 1984). It was stated that some balance data suggest that a magnesium intake of 3.4 mg/kg body 

weight per day may be associated with zero balance (Jones et al., 1967; Health and Welfare Canada 

Scientific Review Committee, 1990), but a PRI was not set. Instead, an Acceptable Range of Intakes 

of 150–500 mg/day was proposed based on observed intakes (in the USA and the UK). 

The Netherlands Food and Nutrition Council (1992) considered, on the basis of balance studies (Jones 

et al., 1967; Schwartz et al., 1978; Kelsay et al., 1979; van Dokkum et al., 1983; Schwartz et al., 

1984), that no negative balances occur at magnesium intakes of 250–350 mg/day. Assuming that 

magnesium requirement is related to body weight, an Adequate Range of Intake of 300–350 mg/day 

for men and of 250–300 mg/day for women was derived. 

The UK Committee on Medical Aspects of Food Policy (COMA) (DH, 1991) considered balance 

studies to set DRVs (Jones et al., 1967; Marxhall et al., 1976; Seelig, 1982). Based on one study 

(Jones et al., 1967) showing that a magnesium intake of 3.4 mg/kg body weight per day is adequate for 

maintaining zero balance, an EAR was derived by multiplication with reference body weights. Using a 

CV of 10 % for men and 17.5 % for women, Reference Nutrient Intakes were set for men and women 

of all ages (Table 2). 

Table 2:  Overview of Dietary Reference Values for magnesium for adults 

 D-A-CH 

(2015) 

NCM 

(2014) 

WHO/FAO 

(2004) 

Afssa 

(2001) 

IOM 

(1997) 

SCF 

(1993) 

NL 

(1992) 

DH 

(1991) 

Age (years) 19–< 25 ≥ 18 19–65 ≥ 20 19–30 ≥ 18 ≥ 19 ≥ 19 

PRI         

Men (mg/day) 400 350 260 420 400 150–500 
(a)

 300–350 
(a)

 300 

Women (mg/day) 310 280 220 360 310 150–500 
(a)

 250–300 
(a)

 270 

Age (years) ≥ 25  > 65  ≥ 31    

PRI         

Men (mg/day) 350  224  420    

Women (mg/day) 300  190  320    

NCM, Nordic Council of Ministers; NL, Netherlands Food and Nutrition Council. 

(a): Acceptable/Adequate Range of Intake(s). 

4.2. Infants and children 

The German-speaking countries (D-A-CH, 2015) assumed that there is a magnesium retention of 

3 mg/kg body weight per day during growth, which should be covered by an intake of 6 mg/kg body 

weight per day (IOM, 1997). RIs were derived on the basis of this value and taking into account 

reference body weights of the age groups (Table 3). 

For NNR 2012, the Nordic countries (Nordic Council of Ministers, 2014) maintained the RIs for 

children from 1996, which at that time had been taken over from the SCF (1993). 

WHO/FAO (2004) stated that results of magnesium balance studies and other studies possibly useful 

for assessing magnesium requirements should be interpreted in the light of protein and energy intakes 

of subjects studied. It was also stated that previously derived magnesium requirements by other 

authorities may have been overestimates. Based on magnesium intake on a body weight basis 

considered by similar committees in the USA, the EU and the UK to maintain zero magnesium 

balance and considering, in particular, balance studies enabling the development of an equilibrium 

(Hunt and Schofield, 1969; Marxhall et al., 1976; Mahalko et al., 1983; Andon et al., 1996), 
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Recommended Nutrient Intakes were proposed which were denoted as provisional. The results of a 

study on nutritional rehabilitation of children suffering from protein–energy malnutrition who were 

receiving or not receiving magnesium supplements (Nichols et al., 1978) were considered to support 

the value derived for young children. 

Afssa (2001) set an AI of 75 mg/day for infants from 6 to 12 months of age on the basis of magnesium 

intake from breast milk and solid food (Lönnerdal, 1995). Afssa (2001) noted that studies using 

isotopes indicate an AR of 5 mg/kg body weight per day for children (Abrams et al., 1997), which 

increases to 5.3 mg/kg body weight per day in older children because of an increase in growth 

velocity. The PRI of 6 mg/kg body weight per day derived for adults was also applied to children up to 

12 years of age. For children aged 13–18 years, an additional intake of 25 mg/day was advised to 

cover needs related to the increased rate of growth. 

IOM (1997) set an AI of 75 mg/day for infants aged 7–12 months considering an average magnesium 

concentration in breast milk of 34 mg/L (Dewey et al., 1984; Allen et al., 1991), a mean breast milk 

intake of 0.6 L/day (Heinig et al., 1993) and a mean magnesium intake from solid foods of 55 mg/day 

as observed in formula-fed infants aged 9–12 months (Specker et al., 1997). For children from 1 to 18 

years of age, EARs were set on the basis of magnesium balance studies. These were available for 

children aged 10–15 years (Schwartz et al., 1973; Greger et al., 1978; Greger et al., 1979; Andon et al., 

1996; Abrams et al., 1997; Sojka et al., 1997) and 7–9 years (Schofield and Morrell, 1960). A 

magnesium intake of 5 mg/kg body weight per day appeared to have met the requirement of some but 

not all children in these studies. Using this value and reference body weights, EARs for younger 

children were extrapolated and were 65, 110 and 200 mg/day for children aged 1–3, 4–8 and 9–13 

years, respectively. For children aged 14–18 years, ARs were assumed to be greater per kilogram body 

weight and the EAR was estimated to be 5.3 mg/kg body weight per day. Using reference body 

weights, EARs of 340 and 300 mg/day were derived for boys and girls, respectively. In the absence of 

information about the variation in requirement, a CV of 10 % was applied to all EAR values to derive 

the RDAs. 

The SCF (1993) derived “quasi-PRIs” on the basis of body weights and assuming that requirements 

range from 7 mg/kg body weight per day (denoted slightly higher than the intake from breast milk) at 

6–11 months to 4.2 mg/kg body weight per day (denoted slightly higher than the figure of 3.4 mg/kg 

body weight per day that is likely to be adequate in adults) at 15–17 years. An extra 30 % was added 

to allow for individual variations in growth. The SCF (1993) stressed the uncertainty around these 

values. 

The Netherlands Food and Nutrition Council (1992) extrapolated Adequate Ranges of Intake for 

children from those for adults on the basis of body weight. For breast-fed infants a daily magnesium 

intake of 25–35 mg was estimated (Wacker and Parisi, 1968; Neville et al., 1984), and the Adequate 

Range of Intake for infants aged 6–12 months was set at 35–60 mg/day. 

The UK COMA (DH, 1991) derived an EAR of 6 mg/kg body weight per day for infants aged 4–6 

months on the basis of magnesium intake via breast milk reported to contain 28 mg/L (range 26–

30 mg/L; DHSS (1980)). For children aged 6 months to 18 years, the EAR was assumed to be 

4.5 mg/kg body weight per day, which was interpolated between the value for infants aged 4–6 months 

and the EAR on a body weight basis for adults (see Section 4.1). EARs were derived using reference 

body weights, and Reference Nutrient Intakes were set using CVs between 10 % and 16.5 % for the 

various age groups. 
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Table 3:  Overview of Dietary Reference Values for magnesium for children 

 D-A-CH 

(2015) 

NCM 

(2014) 

WHO/FAO 

(2004) 

Afssa 

(2001) 

IOM 

(1997) 

SCF 

(1993) 

NL 

(1992) 

DH 

(1991) 

Age (months) 4–<12 6–11 7–12 7–12 7–12 6–11 6–12 7–9 

PRI (mg/day) 60 80 54 
(a)

 75 75 
(b)

 80 
(a)

 35–60 
(c)

 75 

Age (years)        10–12 

PRI (mg/day)        80 

Age (years) 1–<4 1–<2 1–3 1–3 1–3 1–3 1–4 1–3 

PRI (mg/day) 80 85 60 
(a)

 80 80 85 
(a)

 60–70 
(c)

 85 

Age (years) 4–<7 2–5 4–6 4–6 4–8 4–6 4–7 4–6 

PRI (mg/day) 120 120 76 
(a)

 130 130 120 
(a)

 90–100 
(c)

 120 

Age (years) 7–<10 6–9 7–9 7–9  7–10 7–10 7–10 

PRI (mg/day) 170 200 100 
(a)

 200  200 
(a)

 120–140 
(c)

 200 

Age (years) 10–<13 10–13 10–18 10–12 9–13 11–14 10–13 11–14 

PRI (mg/day)    280     

Boys 230 280 230 
(a)

  240 280 
(a)

 150–175 
(c)

 280 

Girls 250 280 220 
(a)

  240 280 
(a)

 155–185 
(c)

 280 

Age (years) 13–<15   13–15   13–16  

PRI (mg/day)         

Boys 310   410   220–255 
(c)

  

Girls 310   370   210–250 
(c)

  

Age (years) 15–<19 14–17  16–19 14–18 15–17 16–19 15–18 

PRI (mg/day)         

Boys 400 350  410 410 300 
(a)

 275–325 
(c)

 300 

Girls 350 280  370 360 300 
(a)

 225–275 
(c)

 300 

NCM, Nordic Council of Ministers; NL, Netherlands Food and Nutrition Council. 

(a): The uncertainty accompanying these values was expressed. 

(b): AI. 

(c): Adequate Range of Intake. 

4.3. Pregnancy and lactation 

The German-speaking countries (D-A-CH, 2015) stated that the fetus accumulates daily 5–7.5 mg of 

magnesium during the third trimester. It was, however, assumed that the RI for (young) non-pregnant 

women covers the requirement arising from this. During lactation, considering a mean magnesium 

concentration of breast milk of 31 mg/L and a milk secretion of 0.75 L/day, a daily magnesium loss of 

24 mg via breast milk was assumed. Taking into account absorption efficiency, an additional 

magnesium intake of 80–90 mg/day was estimated to compensate for this loss. 

For NNR 2012, it was considered that the RI for non-pregnant non-lactating women is sufficient to 

also cover the needs during pregnancy and lactation (Nordic Council of Ministers, 2014). 

WHO/FAO (2004) considered that the fetus accumulates 8 mg and fetal adnexa accumulate 5 mg of 

magnesium during the whole pregnancy. Taking into account absorption efficiency, a total 

requirement of 26 mg over the whole pregnancy was calculated, which was assumed to be met by 

adaptation. Thus, the Recommended Nutrient Intake for pregnant women was the same as for non-

pregnant women. During lactation, a daily magnesium loss of 25–28 mg via breast milk was assumed. 

An additional magnesium intake of 50–55 mg/day was estimated to cover this loss. 

Afssa (2001) acknowledged that the requirement during pregnancy increases particularly during the 

third semester, owing to the transfer of magnesium to the fetus. Owing to the absence of compensatory 

mechanisms for this increased requirement, an additional intake of 40 mg/day was advised during 

pregnancy. For lactating women, an increase in intake of 30 mg/day was recommended, despite a 

decrease in urinary magnesium excretion and an increase in bone resorption that may contribute to 

meeting the increased magnesium requirement during lactation. 
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IOM (1997) considered that inconsistent findings on the effects of magnesium supplementation on 

pregnancy outcome make it difficult to determine if magnesium intakes greater than those 

recommended for non-pregnant women are beneficial. It was noted that there are no data indicating 

that magnesium is conserved during pregnancy or that intestinal absorption is increased. Thus, a 

factorial approach was used considering the gain in weight associated with pregnancy (increase in lean 

body mass of 6–9 kg with a midpoint of 7.5 kg (IOM, 1990), a magnesium concentration of lean body 

mass of 470 mg/kg (Widdowson and Dickerson, 1964) and an absorption efficiency of 40 % (Abrams 

et al., 1997)). A value of 33 mg/day was calculated and the additional requirement was set at 

35 mg/day. For lactation, IOM (1997) considered that consistent evidence does not exist to support an 

increased requirement for dietary magnesium during lactation. It was stated that decreased urinary 

excretion of magnesium and increased bone resorption during lactation may provide the necessary 

magnesium for milk production. Therefore, the EAR and RDA were estimated to be the same as for 

non-lactating women of similar age and body weight. 

The SCF (1993) stated that the Acceptable Range of Intakes for adults (i.e. 150–500 mg/day) also 

applies to pregnant and lactating women. 

The Netherlands Food and Nutrition Council (1992) stated that balance studies in pregnant women 

have shown that a daily magnesium intake of 400 mg is not always sufficient to maintain balance and 

that the increased requirement for magnesium is probably greatest during the third trimester. An 

Adequate Range of Intake of 300–350 mg/day was set. For lactating women, an Adequate Range of 

Intake of 300–400 mg/day was derived. 

The UK COMA (DH, 1991) considered that the fetus accumulates about 8 mg/day of magnesium and 

that there is a requirement of 10 mg/day for the accumulation of placenta and other tissues (Ziegler et 

al., 1976; Widdowson, 1980). However, it was considered that physiological adaptation during 

pregnancy and release from maternal stores ensures an adequate supply, and no additional intake was 

set. For lactating women, taking into account a magnesium concentration in breast milk of 28 mg/L 

(DHSS, 1980), assuming a magnesium secretion of 25 mg/day via milk and an absorption efficiency 

of 50 %, an additional intake of 50 mg/day was derived (Table 4). 

Table 4:  Overview of Dietary Reference Values for magnesium for pregnant and lactating women 

 D-A-CH 

(2015) 

NCM 

(2014) 

WHO/FAO 

(2004) 

Afssa 

(2001) 

IOM 

(1997) 

SCF 

(1993) 

NL 

(1992) 

DH 

(1991) 

Pregnancy         

Additional intake 

(mg/day) 

0 0 0 40 40 0 0–100 0 

PRI (mg/day) 350 
(a)

/310 
(b)

 280 220 400 
(c)

 400 
(a)

 

350 
(d)

 

360 
(e)

 

150–500 
(f)

 300–350 
(g)

 270 

Lactation         

Additional intake 

(mg/day) 

40 
(a)

/80 
(b)

 0 50 30 0 0 0–150 50 

PRI (mg/day) 390 280 270 390 360 
(a)

 

310 
(d)

 

320 
(e)

 

150–500 
(f)

 300–400 
(g)

 320 

NCM, Nordic Council of Ministers; NL, Netherlands Food and Nutrition Council. 

(a): < 19 years. 

(b): ≥ 19 years. 

(c): Women in the third trimester. 

(d): 19–30 years. 

(e): 31–50 years. 

(f): Acceptable Range of Intakes. 

(g): Adequate Range of Intake. 
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5. Criteria (endpoints) on which to base Dietary Reference Values 

5.1. Biomarkers as indicators of magnesium requirement 

As stated in Section 2.4, the Panel considers that there is no appropriate biomarker of magnesium 

intake or status that can be used for assessing magnesium requirement and for setting DRVs for 

magnesium. 

5.2. Balance studies on magnesium 

Balance studies are based on the assumption that a healthy subject on an adequate diet maintains an 

equilibrium or a null balance between nutrient intakes and nutrient losses: at this null balance, the 

intake matches the requirement determined by the given physiological state of the individual. When 

intakes exceed losses (positive balance), there is nutrient accretion that may be attributable to growth 

or to weight gain, anabolism or repletion of stores; when losses exceed intakes (negative balance), 

nutrient stores are progressively depleted resulting, in the long term, in clinical symptoms of 

deficiency. In addition to numerous methodological concerns about accuracy and precision in the 

determination of intakes and losses (Baer et al., 1999), the validity of balance studies for addressing 

requirements has been questioned: they might possibly reflect only adaptive changes before a new 

steady state is reached (Young, 1986), or they might reflect only the conditions for maintenance of 

nutrient stores and exchangeable body pools in the context of a given diet, and the relevance for health 

of the size of the pools still needs to be established for each nutrient (Mertz, 1987). 

5.2.1. Balance studies in adults 

Many studies have been performed to assess magnesium balance (Jones et al., 1967; Hunt and 

Schofield, 1969; Marxhall et al., 1976; Schwartz et al., 1978; Kelsay et al., 1979; Seelig, 1982; Kelsay 

and Prather, 1983; Mahalko et al., 1983; van Dokkum et al., 1983; Lakshmanan et al., 1984; Schwartz 

et al., 1984; Schwartz et al., 1986; Wisker et al., 1991; Spencer et al., 1994). Considering the balance 

studies in adults, which have an a priori sufficient adaptation period (see Appendix G), the Panel notes 

that many of these were conducted to assess interactions of some nutrients on magnesium absorption 

and balance, and that the diversity of background diets makes comparisons of the results of these 

balance studies difficult. The number of subjects included in the studies is generally small. Contrary to 

studies in children, most of the studies in adults did not express the results in relation to body weight. 

For most of the studies, the variability of intakes is limited (in the range 200–400 mg/day, with the 

exception of the study of Spencer et al. (1994)). For the only study reporting on individual values 

(Jones et al., 1967), the same approach as used by Hunt and Johnson (2006) (see next paragraph) 

resulted in a requirement of 219 mg/day or 4 mg/kg body weight per day. Recent studies in Japanese 

subjects reported zero balance for a magnesium intake of 4.1 mg/kg body weight per day (Nishimuta 

et al., 2006) and 4.2 mg/kg body weight per day (Nishimuta et al., 2012). The latter study was a 

compilation of 13 balance studies performed between 1986 and 2007 on a total of 131 female subjects. 

However, in the calculations, the adjustment to zero of the median values of several included studies 

where balances were positive hampers the interpretation of this result; moreover, adaptation periods in 

both studies (Nishimuta et al., 2006; Nishimuta et al., 2012) were very short (2–4 days). In the study 

by Nielsen and Milne (2004) in postmenopausal women, positive balances (1–26 mg/day) were 

observed for a magnesium intake between 310 and 334 mg/day. 

Hunt and Johnson (2006) compiled the results of 27 balance studies conducted in a metabolic unit 

under well-controlled conditions. The 27 studies, in which the assessment of magnesium balance was 

not the primary study objective, were carried out between 1976 and 2000 on 243 apparently healthy 

subjects (150 women and 93 men, mean age 51 and 28 years, respectively), after excluding subjects 

who had insufficient (below the EAR) or excessive (above the 99
th
 percentile) intakes of possibly 

interacting nutrients (calcium, copper, iron, phosphorus or zinc). The last 6–14 days of each 

equilibrating dietary period of at least 28 days were considered for the calculation of balances 

(difference between intakes and losses through faeces and urine), which resulted in 664 available data 

points. The majority of studies did not use magnesium supplements, whereas in some the basal diet 
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was supplemented with magnesium gluconate (or magnesium citrate dibasic in one study) to meet the 

RDA or a pre-defined experimental magnesium intake value. Null balance was achieved at a 

magnesium intake of 165 mg/day (95 % prediction interval = 113–237 mg/day; Y = 19.8 + 0.880 M, 

where Y refers to magnesium output and M refers to magnesium intake), corresponding to 2.36 mg/kg 

body weight per day (95 % prediction interval = 1.58–3.38 mg/kg body weight per day; 

Y = 0.306 + 0.870 M), or 0.075 mg/kcal per day (95 % prediction interval = 0.05–0.11 mg/kcal per 

day; Y = 0.011 + 0.857 M). Magnesium balance does not seem to be affected by age (subjects ranging 

in age from 20 to 80 years were included in the studies) or sex, suggesting that magnesium absorption 

does not change with age. From the characteristics of the statistical models, the authors concluded that 

there was strong homeostatic control of magnesium metabolism within the wide range of intakes 

observed in the studies (84–598 mg/day), especially with intakes below the null balance of 

165 mg/day, with no suggestion of modifications of fractional magnesium absorption within this 

range. 

Shils and Rude (1996) considered that magnesium balance studies were the most suitable basis for 

setting reference values for magnesium, provided careful consideration is given to the quality of the 

methodology used in the studies. Overall, the results of the studies summarised in Appendix G are 

inconsistent, and they therefore cannot be used to define the requirement for magnesium. On the other 

hand, considering the number of subjects of both sexes and the number of individual balance data, the 

large age range, the wide range of magnesium intake in the studies compiled, the comparability of 

experimental settings between the studies, especially the expression of results in relation to individual 

body weights, and the statistical analysis of the pooled data, the Panel considers that the balance 

studies compiled by Hunt and Johnson (2006) provide a stronger weight of evidence for adults than 

any of the other individual balance studies listed in Appendix G. 

5.2.2. Balance studies and other indicators of requirement in children 

There are some balance studies in children aged 7–9 years (Schofield and Morrell, 1960) and children 

aged 10–15 years (Schwartz et al., 1973; Greger et al., 1978; Greger et al., 1979; Andon et al., 1996; 

Abrams et al., 1997; Sojka et al., 1997) (see Appendix H). The Panel notes that most of these studies 

have limitations (small number of subjects, adaptation period short or absent) and are heterogeneous 

with respect to their primary objective (e.g. influence of another nutrient on magnesium balance) and 

background diet. The Panel notes that these studies have been used for setting DRVs for children 

(Section 4.2). The Panel also notes that requirements which may be derived from these balance studies 

with limitations are lower than average observed magnesium intakes in children (Section 3.2). 

Magnesium accretion in bone is considered to be around 2.7 mg/day in infants aged 4–12 months and 

3.1 and 4.2 mg/day in girls and boys, respectively, throughout childhood, with a peak rate of 

8.4 mg/day in adolescence (Prentice and Bates, 1994). The Panel considers that this accretion rate 

constitutes only a small proportion and does not need to be considered in setting DRVs for magnesium 

for children. 

Very few studies have investigated magnesium intake or status in relation to health outcomes in 

children (Huerta et al., 2005; Bo et al., 2007), and the Panel is unaware of studies in healthy children. 

The Panel considers that the available data on magnesium intake and health consequences in children 

cannot be used for setting DRVs for magnesium for children. 

5.3. Indicators of magnesium requirement in pregnancy 

Magnesium transfer to the fetus across the placenta occurs separately from that of calcium, through the 

paracellular route, and is driven by an electrochemical gradient; the existence of an active transport 

mechanism has still to be confirmed (Nandakumaran et al., 2002). The fetus accumulates magnesium, 

with a total content of around 0.6–0.8 g magnesium in mature fetuses weighing 3–4 kg, the percentage 

of magnesium in fetal fat-free mass being constant for fetuses weighing more than 2 kg, at around 

0.26 mg/kg (Widdowson and Spray, 1951; Lentner, 1981). The placental magnesium content is low 

(around 36 mg; Challier et al. (1988)). The accretion of all these amounts would represent a daily net 
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magnesium transfer of around 2–3 mg. According to Ziegler et al. (1976), accretion varies from 

1.8 mg/day at week 24–25 to 7.5 mg/day at week 36–37 and thereafter decreases to 5 mg/day at week 

39–40; this gives an average daily accretion of 4.7 mg/day from week 24 to week 40. 

Magnesium sulphate is promoted as an efficient treatment of pre-eclampsia and eclampsia (WHO, 

2011), but the usefulness of magnesium supplementation during pregnancy for decreasing the risk of 

this adverse event is controversial because of the lack of good-quality data. A review of 10 

randomised trials involving 9 090 women and their infants did not show an influence of magnesium 

supplementation on infant or maternal outcomes when they were studied as primary outcomes 

(Makrides et al., 2014). 

A balance study in free-living subjects performed in the three trimesters of pregnancy in 10 women 

showed that a mean daily magnesium intake of 269 ± 55 mg led to a negative balance of -40 ± 50 mg 

(Ashe et al., 1979). According to Husain and Sibley (1993), this negative balance could be due to an 

unusually low fractional absorption of magnesium, as faecal loss represented around 80 % of the 

intake. Other limitations of the study are the small number of subjects, the use of self-selected diets 

and the absence of information on pre-pregnancy intake, whereas a strength is the determination of 

four to six 7-day balances for each woman (two per trimester). Ashe et al. (1979) stated that the high 

within- and between-subject variability in magnesium intake might have obscured physiological 

adaptations occurring in the later part of pregnancy. 

The Panel concludes that infant or maternal clinical outcomes during pregnancy cannot be used to 

assess magnesium requirements during this phase. On the other hand, the available evidence indicates 

that there is only a small additional requirement during pregnancy which may be met by adaptive 

metabolic changes. 

5.4. Indicators of magnesium requirement in lactation 

According to Dorea (2000), concentrations of magnesium reported for breast milk vary over a wide 

range (15–64 mg/L), with a median value of 31 mg/L and 75 % of reported mean concentrations being 

below 35 mg/L (see Section 2.3.5.5). Dengel et al. (1994) compared six lactating and six post partum 

non-lactating women (75 ± 5 and 61 ± 5 days post partum, respectively) with seven never-pregnant 

women who received a constant diet providing 218 mg magnesium/day for 20 days. After an 

equilibration period of 5 days, urine and faeces were collected for the next 15 days. Comparing 

lactating women with never-pregnant women, the authors observed that the export in milk of around 

25 mg/day was compensated for by a reduction of 33 mg/day in urinary magnesium excretion. The 

Panel considers that there are adaptive mechanisms so that there may be no need to compensate for the 

amount of magnesium secreted in breast milk during lactation. 

5.5. Magnesium intake and health consequences 

A comprehensive literature search covering the period from 1990 to October 2011 was performed as 

preparatory work to the present Opinion, focusing on original studies reporting on quantitative 

relationships between intake and status, status and health or intake and health (Brown et al., 2012). 

Overall, the preparatory report concluded that high-quality data for health outcomes on which to 

derive DRVs for magnesium are limited. The literature search was continuously updated until 

adoption of this Opinion. 

Many clinical conditions have been studied in relation to magnesium intake/status that consider the 

therapeutic potential of magnesium (such as in migraine headaches, neuromuscular conditions such as 

restless leg syndrome, or clinical depression) or its potential role on the basis of mechanistic 

considerations, such as for the immune system (Wu and Veillette, 2011). The analysis presented in this 

section is restricted to the conditions relevant for the general healthy population, where a sufficient 

body of evidence exists and quantitative data on magnesium intake are available (studies only 

reporting on serum magnesium concentration are not considered in this section). 
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5.5.1. Cardiovascular disease-related outcomes 

5.5.1.1. Blood pressure 

Previous systematic reviews and meta-analyses on studies investigating the effect of magnesium 

supplementation on systolic (SBP) and diastolic blood pressure (DBP) have shown inconclusive 

results. Several of these reviews included hypertensive subjects, and information on dietary 

magnesium intake was not generally available (Burgess et al., 1999; Jee et al., 2002; Dickinson et al., 

2006; Kass et al., 2012). From the compilation of 30 observational studies (mainly cross-sectional), 

Mizushima et al. (1998) concluded that there may be an inverse relationship between magnesium 

intake and SBP and DBP, although quantitative analysis was not possible because of heterogeneity 

and various methodological limitations. In a recent cross-over study lasting 8 weeks, with a 4-week 

wash-out period in between, supplementation of magnesium (368 mg/day) to 14 healthy normotensive 

young men did not affect their SBP or DBP (Cosaro et al., 2014). 

5.5.1.2. Cardiovascular events 

The meta-analysis by Qu et al. (2013a) included 13 prospective cohort studies reporting on dietary 

magnesium (477 680 participants and over 14 900 cardiovascular events) and showed a significant 

inverse association between magnesium intake and risk of cardiovascular disease (CVD) events 

comprising stroke, coronary heart disease and CVD death (relative risk (RR) = 0.85, 95 % confidence 

interval (CI) = 0.78–0.92, I
2
 = 39 %, comparing the highest and the lowest category of magnesium 

intake). Dose–response analyses showed evidence of a non-linear association, with the greatest 

reduction occurring for a magnesium intake between 150 and 400 mg/day, although it is unclear if 

supplement use was always considered. 

The meta-analysis by Del Gobbo et al. (2013) included nine prospective studies providing estimates of 

dietary magnesium, mostly from validated food frequency questionnaires, with a median intake across 

studies of 289 mg/day, and incident CVD (including 7 889 CVD events, 4 319 events of ischaemic 

heart disease and 1 158 fatal ischaemic heart disease events). Only two of the nine studies described 

the use of magnesium supplements, and seven of the nine studies were also considered by Qu et al. 

(2013a). Using increments of 200 mg/day in dietary magnesium, dietary intake was not associated 

with total CVD. The authors found a significant non-linear association with fatal ischaemic heart 

disease; in comparison with lower intakes, a 27 % lower risk of fatal ischaemic heart disease was 

observed up to a magnesium intake of about 250 mg/day (RR = 0.73, 95 % CI = 0.62–0.86). 

Combining six prospective cohort studies (including four already included in the meta-analyses of Qu 

et al. (2013a) and Del Gobbo et al. (2013)), the meta-analysis by Xu et al. (2013) did not find a 

significant association between magnesium intake and total CVD mortality; however, a subgroup 

analysis suggested an inverse association in women, leading the authors to conclude that sex might be 

one of the major sources of heterogeneity between studies. This meta-analysis included only studies 

providing adjusted risk estimates, but also included two studies focusing on magnesium intake from 

water (and using this intake for comparisons). 

The Panel notes the discrepancies between these meta-analyses, suggesting that inclusion of non-

adjusted results might confound the association of magnesium intake and CVD events. 

In the Nurses’ Health Study, the relationship between dietary magnesium (including from 

supplements) and the risk of coronary heart disease after a median follow-up of 28 years was 

investigated (Chiuve et al., 2013). After controlling for classical coronary heart disease risk factors, 

higher magnesium intake was not associated with overall coronary heart disease risk; however, the 

authors observed a lower risk of fatal coronary heart disease (RR = 0.61, 95 % CI = 0.45–0.84) 

comparing the highest quintile (dietary intake > 342 mg/day) to the lowest quintile (< 246 mg/day). A 

cross-sectional study in 2 695 men and women of the Framingham cohort showed an inverse 

association of total (i.e. dietary and supplemental) magnesium intake with calcification of the coronary 

artery, with each 50-mg/day increment in magnesium intake resulting in 22 % less calcification 
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(p < 0.001), whereas total magnesium intake was not associated with calcification of the abdominal 

aorta (Hruby et al., 2014). 

5.5.1.3. Stroke 

Nie et al. (2013) performed a meta-analysis on the relationship between magnesium intake and stroke, 

including eight prospective cohort studies (8 367 strokes in 304 551 participants). The weighted 

average magnesium intake was 306 mg/day (range 228–471 mg/day). There was an inverse 

association between magnesium intake and incidence of total stroke (RR = 0.89, 95 % CI = 0.82–0.97, 

I
2
 = 0 %); the dose–response analysis showed a small borderline significant inverse association 

between magnesium intake per 100-mg/day increment and total stroke risk (RR = 0.98, 95 % 

CI = 0.95–1.00, I
2
 = 33 %), whereas subgroup analysis showed a significantly lower risk of ischaemic 

stroke when comparing the highest intake with the lowest intake (RR = 0.88, 95 % CI = 0.80–0.98, 

p for heterogeneity = 0.509). These results are similar to those of Larsson et al. (2012), whose meta-

analysis included seven prospective studies (6 477 strokes among 241 378 participants; only one out 

of seven studies showed a significant reduction in stroke incidence) that were also included in the 

meta-analysis by Nie et al. (2013). For every 100-mg/day increment in magnesium intake, the risk of 

total stroke slightly decreased (RR = 0.92, 95 % CI = 0.88–0.99, I
2
 = 0 %). An inverse association 

between magnesium intake and stroke risk was also observed in the Dutch cohorts (n = 36 094, 631 

strokes) of the European Prospective Investigation into Cancer and Nutrition study (Sluijs et al., 

2014). Total magnesium intake (i.e. from diet and supplements) for the lowest and the highest quartile 

was ≤ 285 mg/day and ≥ 398 mg/day, respectively. Per 100-mg/day increment in total magnesium 

intake, stroke risk decreased by 22 % (hazard ratio = 0.78, 95 % CI = 0.65–0.93). 

5.5.1.4. Arrhythmia 

Although magnesium has been suggested for the therapy of arrhythmia, few studies have investigated 

the relationship between magnesium intake and heart rhythm changes in apparently healthy 

populations. Nielsen et al. (2007) submitted 14 healthy postmenopausal women to a magnesium 

depletion diet providing 100 mg/8.4 MJ (2 000 kcal) per day; the depletion period was planned to have 

a duration of 78 days. Five women developed heart rhythm alterations which required magnesium 

repletion earlier than planned (after 42–64 days instead of after 78 days). This study suggests that a 

daily magnesium intake of 100 mg/8.4 MJ may be inadequate. In white and African American men 

and women in the prospective Atherosclerosis Risk in Communities study, no association was 

observed between dietary magnesium intake and risk of atrial fibrillation (Misialek et al., 2013). 

5.5.1.5. Conclusions on cardiovascular disease-related outcomes 

The Panel notes that the association between magnesium intake and CVD-related outcomes may be 

confounded by dietary fibre intake and other dietary factors. For example, in the meta-analysis of 19 

studies by Qu et al. (2013a), only four of the included studies have adjusted for dietary fibre and only 

three for potassium intake. Del Gobbo et al. (2013) reported that about half of the studies included in 

their meta-analysis were adjusted for both sociodemographic and lifestyle variables including age, sex, 

ethnicity, body mass index (BMI), waist circumference, smoking, alcohol consumption and physical 

activity. Therefore, for all these studies, it is difficult to unravel the effect of magnesium per se from 

the effect of foods rich in magnesium or the effect of the total diets associated with consumption of 

these foods. 

The Panel considers that data on magnesium intake and CVD-related outcomes cannot be used for 

setting DRVs for magnesium. 

5.5.2. Metabolic syndrome 

Some studies have investigated the relationship between magnesium intake and the risk of metabolic 

syndrome. Combining eight cross-sectional and two prospective cohort studies (30 092 participants, 

eight studies with healthy subjects and two studies including patients with diabetes mellitus type 2 and 

recipients of living-donor kidney transplant), Ju et al. (2014) showed that every 150-mg/day increment 



www.manaraa.com

Dietary Reference Values for magnesium 

 

EFSA Journal 2015;13(7):4186 27 

in magnesium intake was inversely associated with risk of metabolic syndrome (pooled RR = 0.88, 

95 % CI = 0.84–0.93, I
2
 = 36 %). The meta-analysis of Dibaba et al. (2014) on six cross-sectional 

studies (6 311 cases of metabolic syndrome among 24 473 individuals), of which all but one were also 

included in the meta-analysis of Ju et al. (2014), also concluded that there was an inverse association 

between magnesium intake and the risk of metabolic syndrome. 

The Panel considers that data on magnesium intake and metabolic syndrome cannot be used for setting 

DRVs for magnesium. 

5.5.3. Diabetes mellitus type 2 

In the meta-analysis of Larsson and Wolk (2007) of seven prospective cohort studies (10 912 incident 

cases among 286 668 participants), the relative risk of diabetes mellitus type 2 for a 100-mg/day 

increase in magnesium intake was 0.85 (95 % CI = 0.79–0.92). In the dose–response analysis, studies 

were combined reporting associations between diabetes risk and magnesium intake (assessed 

continuously or categorically). 

The meta-analysis by Dong et al. (2011) with 13 prospective cohort studies (24 516 incident cases for 

536 318 participants, including the studies analysed by Larsson and Wolk (2007)) found a relative risk 

of 0.86 (95 % CI = 0.82–0.89) for each 100-mg/day increment in magnesium intake. In this meta-

analysis, the relative risk was not significantly modified when considering only the studies where 

adjustments were made for dietary fibre intake. In addition, the observed inverse association remained 

in a subgroup analysis among studies of individuals with an average BMI ≥ 25 kg × m
–2

, but no 

association was observed among those with a BMI < 25 kg × m
–2

. This finding suggests that the 

evidence for an inverse association may not be consistent and may concern overweight/obese 

individuals rather than normal-weight individuals, which make up the target population for DRVs. 

However, in the very large cohorts of the Nurses’ Health Study and the Health Professionals Follow-

up Study (included in the meta-analysis), no significant interaction was observed between magnesium 

intake and BMI, and the risk reduction remained significant in stratified analysis by BMI (≤ 27 and 

> 27 kg × m
–2

) (Lopez-Ridaura et al., 2004). The Panel notes that the association between magnesium 

intake and diabetes mellitus type 2 may be confounded by dietary fibre intake and other dietary factors 

and that several observational studies did not adjust for this. 

In the most recent study (Weng et al., 2012), not included in the aforementioned meta-analysis, 1 604 

Taiwanese men and women were followed up for a period of 4.6 years. Risk of diabetes mellitus type 

2 was inversely associated with magnesium intake (HR = 2.61, 95 % CI = 1.42–4.79, comparing the 

lowest quintile (median magnesium intake 212 mg/day) with the highest quintile (median intake 

406 mg/day, reference quintile), p for trend = 0.001). 

Details on magnesium intake and risk estimates for the individual prospective studies included in the 

meta-analysis by Dong et al. (2011) and for the study by Weng et al. (2012) are given in Appendix I. 

Supplementation studies in subjects with diabetes mellitus type 1 or type 2 or in overweight 

individuals with insulin resistance show inconsistent results with respect to improvement of insulin 

sensitivity and glycaemic control (Sales and Pedrosa Lde, 2006; Martini et al., 2010; Volpe, 2013). 

The Panel considers that there is evidence for an inverse association between magnesium intake and 

the risk of diabetes mellitus type 2. The Panel notes that there is insufficient evidence for a dose–

response relationship between magnesium intake and type 2 diabetes risk and considers that data on 

magnesium intake and diabetes mellitus type 2 cannot be used for setting DRVs for magnesium. 

5.5.4. Cancer 

In the report by WCRF/AICR (2007), magnesium was not considered as such, but some subsequent 

studies point to a possible association between magnesium intake and colorectal cancer risk. 
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The meta-analysis of Chen et al. (2012) included eight prospective studies with 338 979 participants 

and 8 000 colorectal cancer cases. The summary relative risk for the highest versus the lowest 

category of magnesium intake for colorectal cancer was 0.89 (95 % CI = 0.79–1.00, I
2
 = 0 %). In 

dose–response analyses, every 50-mg/day increment in magnesium intake was associated with a 5 % 

reduced risk of colorectal cancer (RR = 0.95, 95 % CI = 0.89–1.00, I
2
 = 49 %). Similar results were 

obtained in the meta-analysis of Qu et al. (2013b) of seven prospective cohort studies (333 510 

participants and 7 435 cases), all of which were also considered by Chen et al. (2012). Qu et al. 

(2013b) observed a non-linear dose–response relationship between dietary magnesium and the risk of 

colorectal cancer (for every 100-mg/day increment in magnesium intake, RR = 0.82, 95 % CI = 0.64–

1.00, I
2
 = 63 %), with the greatest reduction of risk for an intake between 200 and 270 mg/day, but 

little evidence of a further reduction with higher intakes. 

The Panel considers that the available information on the relationship between dietary magnesium and 

colorectal cancer risk is insufficient to provide a basis for setting DRVs for magnesium. 

5.5.5. Bone health-related outcomes 

Magnesium has an impact on bone health through its role in the structure of hydroxyapatite crystals in 

bone. Some studies of different design (cross-sectional and prospective observational studies, 

intervention studies using magnesium supplementation) reported on various associations of 

magnesium intake with bone mineral density (BMD) or bone mineral content (BMC) (Tucker et al., 

1999; Ryder et al., 2005; Carpenter et al., 2006; Farrell et al., 2009). Carpenter et al. (2006) enrolled 8- 

to 14-year-old girls with a dietary magnesium intake below 220 mg/day; supplementation with 

300 mg/day for one year significantly increased serum magnesium concentration and BMC of the hip 

by about 3 %, but not of the lumbar spine, compared with placebo. There was no difference in BMD 

between the treatment and placebo groups. In 73 684 postmenopausal women enrolled in the 

prospective Women’s Health Initiative Observational Study (Orchard et al., 2014), baseline hip BMD 

was 3 % higher (p < 0.001) and whole-body BMD was 2 % higher (p < 0.001) in women who 

consumed > 423 mg magnesium/day than in those who consumed < 207 mg/day. However, the 

incidence and relative risks of hip and total fractures occurring during an average of 7.6 years of 

follow-up did not differ across quintiles of magnesium intake. In contrast, the risk of lower arm or 

wrist fractures increased significantly with higher magnesium intakes. As the women with the highest 

magnesium intake were also more physically active and at increased risk of falls, the authors 

concluded that the association between magnesium intake and fractures may possibly be related to 

more physical activity and falls. 

In their literature search, Brown et al. (2012) retrieved two studies which reported on the influence of 

magnesium on markers of bone formation and bone resorption, one of which was an uncontrolled 

study (Fatemi et al., 1991). Doyle et al. (1999) conducted a randomised cross-over study in 26 young 

women, which compared a usual dietary magnesium intake (about 275 mg/day) for four weeks with a 

usual dietary intake supplemented with about 250 mg magnesium/day for four weeks. There were no 

significant differences in biomarkers of bone formation and resorption between the two study periods. 

The Panel notes that, although the role of magnesium in bone structure and physiology is well 

established, there are few quantitative data for using this relationship for setting DRVs for magnesium. 

6. Data on which to base Dietary Reference Values 

The Panel considers that there is no appropriate biomarker of magnesium intake or status that can be 

used for assessing magnesium requirement and for setting DRVs for magnesium (see Section 5.1). 

6.1. Adults 

The Panel notes that a recent pooled analysis of well-controlled balance studies in adults suggests that 

zero magnesium balance may occur at a magnesium intake of 165 mg/day (95 % prediction interval 

based on a linear mixed-effect model: 113–237 mg/day) (Section 5.2.1). The Panel, bearing in mind 

that balance studies might also reflect adaptive changes before a new steady state is reached, evaluated 
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the evidence from balance studies in combination with the findings of large-scale and long-term 

prospective observational studies. Several of these studies point to an inverse relationship between 

magnesium intake and the risk of diabetes mellitus type 2 at daily intakes ranging between 244 and 

773 mg/day (medians of highest quintiles), compared with daily intakes ranging between 115 and 

270 mg/day (medians of lowest quintiles). The Panel notes, however, that there is insufficient 

evidence of a dose–response relationship between magnesium intake and the risk of diabetes mellitus 

type 2 in the general healthy population and that the evidence cannot be used to identify a certain 

magnesium intake above which the risk of diabetes mellitus type 2 is not further reduced. 

Considering all of the evidence available, the Panel decided to set AIs based on observed intakes in 

several EU countries. The range of average intakes for nine European countries is 317–439 mg/day 

(midpoint 378 mg/day) for men and 254–357 mg/day (midpoint 306 mg/day) for women aged 18 to 

< 65 years (see Appendices C and D). For older adults (65 to < 75 years), the ranges are 312–

407 mg/day (midpoint 360 mg/day) for men and 241–343 mg/day (midpoint 292 mg/day) for women. 

For adults above 75 years of age, the ranges are 264–388 mg/day (midpoint 326 mg/day) for men and 

232–347 mg/day (midpoint 290 mg/day) for women. The Panel notes that midpoints of ranges for 

intake estimates in these age and sex groups are in good agreement with medians for the sex and age 

groups of the average intakes estimated per survey. 

The Panel notes that there is at present insufficient evidence for considering different DRVs according 

to age in adults and decided to merge the ranges for all men above 18 years (observed mean 

magnesium intakes of 264–439 mg/day), for which the midpoint is 352 mg/day. Similarly, for women, 

the merged range for all women above 18 years is 232–357 mg/day, with a midpoint of 295 mg/day. 

The median of average intakes of women of all ages is 298 mg/day, and the median of average intakes 

of men of all ages is 341 mg/day. 

Considering the rather large differences in magnesium intakes between men and women, the Panel 

proposes to set AIs according to sex. The Panel notes that the expression of results on the basis of 

energy intake would correspond to the involvement of magnesium in many biochemical processes 

(Section 2.2.1) and would also allow the rather large differences in energy intake in adults to be taken 

into account. For these reasons, the Panel decided to report, in Appendices C and D, the results also in 

mg/MJ and notes that intakes per unit energy are similar between men and women (see also Section 

3.2). However, the Panel considers that the use of DRVs for energy for setting DRVs for magnesium 

would require additional assumptions (e.g. selection of a specific physical activity level), which would 

lead to further uncertainties. Thus, for men, considering the distribution of the observed average 

intakes, the Panel proposes an AI of 350 mg/day. For women, on the same basis, the Panel proposes an 

AI of 300 mg/day. 

The Panel considers that these AIs apply to all adults, including older adults. 

6.2. Infants aged 7–11 months 

The Panel notes that, in breast-fed infants aged 0–6 months, magnesium intake is estimated to be 

around 25 mg/day (Section 2.3.5.5). Using isometric scaling as the most conservative extrapolation 

method, which is justified by bone magnesium accretion, to extrapolate to the magnesium intake of 

infants aged 7–11 months results in an estimated magnesium intake of 35 mg/day in older infants. This 

is calculated using the formula below and rounding to the nearest unit. Averages of the median 

weight-for-age of male and female infants aged 3 months (6.1 kg) and 9 months (8.6 kg) according to 

the WHO Growth Standards (WHO Multicentre Growth Reference Study Group, 2006) are used for 

the calculation. 

Magnesium intake of infants aged 7–11 months = magnesium intake of infants aged 0–6 

months × (body weight of infants aged 9 months/body weight of infants aged 3 months) 
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The SCF (1993) proposed a guidance value of 80 mg/day on the basis of intakes considered 

appropriate for the majority of infants aged 6 to < 12 months, amounting to 3.5–7 mg/kg body weight 

per day, in line with the results of balance studies in older children. 

The Panel notes that the mean observed intakes in four EU countries for which data are available are 

in the range 72–120 mg/day (Appendices C and D). These estimates include the consumption of food 

products for the young population and thus of foods fortified with magnesium in accordance with 

current EU regulations (see Section 3.1). 

Therefore, a potential range for DRVs for magnesium would be 35 to 120 mg/day (midpoint 

78 mg/day). In the absence of other evidence and in line with the proposal by the SCF (1993), the 

Panel decided to set an AI for infants aged 7–11 months of 80 mg/day. 

6.3. Children 

In the absence of well-controlled balance studies in children and of other evidence that may be used 

for deriving a requirement for magnesium in children, the Panel decided to set AIs based on observed 

intakes in EU countries. 

As for adults (Section 6.2), the Panel considers that the use of DRVs for energy for setting DRVs for 

magnesium would require additional assumptions (e.g. selection of a specific physical activity level), 

which would lead to further uncertainties. Thus, the Panel decided to set DRVs for magnesium for 

children in mg/day. 

In children aged 1 to < 3 years, mean observed magnesium intake from five surveys in four EU 

countries ranges from 162 to 188 mg/day (midpoint 175 mg/day) in boys and from 153 to 174 mg/day 

(midpoint 164 mg/day) in girls (Appendices C and D). For boys and girls aged 1 to < 3 years, 

considering the absence of a strong basis for a distinct value according to sex and the distribution of 

the observed mean intakes, the Panel selects the midpoint of average intakes and sets an AI of 

170 mg/day for boys and girls. 

In children aged 3 to < 10 years, mean observed magnesium intake from seven surveys in six EU 

countries ranges from 202 to 281 mg/day (midpoint 242 mg/day) in boys and from 184 to 259 mg/day 

(midpoint 222 mg/day) in girls (Appendices C and D). For boys and girls aged 3 to < 10 years, on the 

same basis as for children aged 1 to < 3 years, considering the distribution of the observed mean 

intakes, the Panel selects the midpoint of average intakes and sets an AI of 230 mg/day for boys and 

girls. 

In children aged 10 to < 18 years, mean observed magnesium intake from seven surveys in seven EU 

countries ranges from 257 to 344 mg/day (midpoint 301 mg/day) in boys and from 213 to 384 mg/day 

(midpoint 299 mg/day) in girls (Appendices C and D). However, the Panel notes that the data provided 

for Latvia include pregnant girls younger than 18 years and that intakes are rather high compared with 

other datasets; excluding Latvia provides a narrower range of intakes of 213–292 mg/day (midpoint 

253 mg/day). Considering the rather large differences in magnesium intakes between boys and girls 

aged 10 to <18 years, the Panel proposes to set AIs according to sex. For boys aged 10 to < 18 years, 

considering the distribution of the observed average intakes, the Panel selects the midpoint of average 

intakes and sets an AI of 300 mg/day. For girls aged 10 to < 18 years, considering the distribution of 

the observed average intakes, the Panel selects the midpoint of average intakes in non-pregnant girls 

and sets an AI of 250 mg/day. 

6.4. Pregnancy 

Considering that pregnancy induces only a small increase in magnesium requirement (see Section 5.3), 

which is probably covered by adaptive physiological mechanisms and increases in energy intake in 

pregnancy (EFSA NDA Panel, 2013), the Panel considers that the AI for non-pregnant women also 

applies to pregnant women. 
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6.5. Lactation 

About 25 mg/day is secreted with exclusive breastfeeding during the first six months after birth (see 

Section 2.3.5.5). 

The Panel notes the possibility of adaptive processes in magnesium metabolism, at the level of both 

absorption and elimination (see Section 2), and considers that an additional dietary intake may not be 

needed during the lactation period. The study by Dengel et al. (1994) (see Section 5.4) supports this 

approach. 

The Panel concludes that the AI for non-pregnant non-lactating women also applies to lactating 

women. 

CONCLUSIONS 

The Panel concludes that ARs and PRIs for magnesium cannot be derived for adults, infants or 

children, and proposes AIs based on observed intakes (Table 5). For children and adults, this approach 

considers the range of average magnesium intakes estimated from dietary surveys in nine EU 

countries. For infants aged 7–11 months, the Panel proposes AIs after consideration of observed 

intakes, estimated intakes in fully breast-fed infants and upwards extrapolation by isometric scaling. 

The AI set for pregnant and lactating women is the same as for non-pregnant non-lactating women. 

Table 5:  Summary of Adequate Intakes for magnesium 

Age Adequate Intake (mg/day) 

Males Females 

7–11 months 80 80 

1–< 3 years 170 170 

3–< 10 years 230 230 

10–< 18 years 300 250 

≥ 18 years 
(a)

 350 300 

(a): Including pregnant and lactating women. 

RECOMMENDATIONS FOR RESEARCH 

The Panel recommends that research is needed to characterise systematically: 

 the functional and homeostatic responses to a range of exposures to magnesium with a view to 

identifying and validating markers of marginally adequate and excessive intakes of 

magnesium and of chronic and acute magnesium status. Such work might include, for 

example, investigating the value of urinary excretion of magnesium, the magnesium tolerance 

test and the content of magnesium in blood cells and platelets; 

 the nature of possible pathogenic bases for the association of low magnesium status with 

impaired substrate (carbohydrate and lipid) metabolism, and sequelae of the metabolic 

syndrome including diabetes mellitus. 
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APPENDICES 

Appendix A. Magnesium concentration in human milk of mothers of term infants 

Reference Number of 

women (number 

of samples) 

Country Stage of lactation Magnesium concentration (mg/L) 

Mean ± SD Median Range 

Bauer and Gerss (2011) 10 Germany 1–8 weeks 31.6 ± 4.86   

Bjorklund et al. (2012) 60 Sweden 14–21 days 28 ± 4.8 28 21–43 

Bocca et al. (2000) 60 (60) Italy Not reported 23.0 ± 0.51   

Doybak et al. (1999) 35 Turkey 1–4 months (28–123 days) 1
st
 month: 28 ± 7 

4
th

 month: 31 ± 8 

  

Friel et al. (1999) 19 (136) Canada 2 or 3 days to 3 months   26–35 

(17) Week 1: 30.41 ± 4.74  

(16) Week 2: 26.69 ± 3.98 

(16) Week 3: 26.25 ± 4.40 

(15) Week 4: 26.73 ± 4.71 

(15) Week 5: 28.33 ± 5.59 

(15) Week 6: 29.20 ± 5.02  

(15) Week 7: 31.47 ± 5.76  

(15) Week 8: 33.20 ± 5.24  

(12) Week 12: 34.58 ± 6.02 

Hunt et al. (2005) 45 USA > 10 days to 4 months Month 1: 28.6 ± 2.2 

Month 4: 33.0 ± 2.2 

  

Rakicioglu et al. (2006) 21 Turkey 2–5 months During Ramadan (2
nd

 

week): 29 ± 5 

2 weeks after the end of 

Ramadan: 33 ± 5 

  

Sievers et al. (2000) 14 infants Germany Infant age median 3.6 

weeks (range 2.6–4.7) 

 28.6 21.2–44 

Vitolo et al. (2004) 90 Brazil 30–90 days Low socio-economic 

adolescents (n = 31): 

25.8 ± 4.4 

Low socio-economic 

women (n = 30): 28.2 ± 5.6 

High socio-economic 

women (n = 29): 27.0 ± 5.6 
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Reference Number of 

women (number 

of samples) 

Country Stage of lactation Magnesium concentration (mg/L) 

Mean ± SD Median Range 

Witczak and 

Jarnuszewska (2011) 

(9) Poland 5–6 months 40   

Yamawaki et al. (2005) (1170) 

Summer: (577) 

Winter: (593) 

Japan 1–365 days Mean total: 27 ± 9 

By season: 

Summer: 26 ± 9 

Winter: 27 ± 9 

By stage of lactation: 

Day 1–5: 32 ± 5 

Day 6–10: 30 ± 9 

Day 11–20: 29 ± 6 

Day 21–89: 25 ± 7 

Day 90–180: 27 ± 11 

Day 181–365: 33 ± 7 

  

This table lists studies not yet considered in the review by Dorea (2000). 
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Appendix B. Dietary surveys in the EFSA Comprehensive European Food Consumption Database included in the nutrient intake calculation and 

number of subjects in the different age classes 

DIPP, Type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of Infants and Young Children; EsKiMo, 

Ernährungsstudie als KIGGS-Modul; FINDIET, the national dietary survey of Finland; INCA, Étude Individuelle Nationale des Consommations Alimentaires; INRAN-SCAI, Istituto Nazionale 

di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; FC_PREGNANTWOMEN, food consumption of pregnant women in Latvia; NANS, National Adult 

Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme 

von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln. 

(a): A 48-hour dietary recall comprises two consecutive days. 

(b): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation, as the results may not be statistically robust (EFSA, 2011b) and, therefore, for these 

dietary surveys/age classes, the 5th and 95th percentile estimates will not be presented in the intake results. 

(c): One subject was excluded from the dataset because only one 24-hour dietary recall day was available, i.e. final n = 990. 

(d): The Swedish dietary records were introduced through the internet. 

Country Dietary survey Year Method Days Age 

(years) 

Number of subjects 

Infants 

< 1 year 

Children 

1–< 3 

years 

Children 

3–< 10 

years 

Children 

10–< 18 

years 

Adults 

18–< 65 

years 

Adults 

65–< 75 

years 

Adults 

≥ 75  

years 

Finland/1 DIPP  2000–2010 Dietary record  3 < 1–6 499 500 750     

Finland/2 NWSSP 2007–2008 48-hour dietary recall (a) 2 × 2 (a) 13–15    306    

Finland/3 FINDIET2012 2012 48-hour dietary recall (a) 2 (a) 25–74     1 295 413  

France INCA2 2006–2007 Dietary record 7 3–79   482 973 2 276 264 84 

Germany/1 EsKiMo 2006 Dietary record 3 6–11   835 393    

Germany/2 VELS  2001–2002 Dietary record 6 < 1–4 159 347 299     

Ireland NANS 2008–2010 Dietary record  4 18–90     1 274 149 77 

Italy INRAN-SCAI 2005–06 2005–2006 Dietary record  3 < 1–98 16 (b) 36 (b) 193 247 2 313 290 228 

Latvia FC_PREGNANTWOMEN 2011 24-hour dietary recall 2 15–45    12 (b) 991 (c)   

Netherlands DNFCS 2007–2010 24-hour dietary recall  2 7–69   447 1 142 2 057 173  

Sweden RISKMATEN 2010–2011 Dietary record (web) (d) 4 18–80     1 430 295 72 

United 

Kingdom /1 

DNSIYC-2011 2011 Dietary record 4 0.3–1.5 1 369 1 314      

United 

Kingdom /2 

NDNS Rolling Programme 

(Years 1–3) 

2008–2011 Dietary record  4 1–94  185 651 666 1 266 166 139 
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Appendix C. Magnesium intake in males in different surveys according to age classes and country 

Age Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n 
(a)

 Average Median P5 P95 n 
(a)

 Average Median P5 P95 

< 1 year 
(b)

 Finland DIPP_2001_2009 247 76 80 15 131 245 42 38 26 68 

Germany VELS 84 111 103 60 173 84 34 34 21 48 

Italy INRAN_SCAI_2005_06 9 76 56 
(c) (c)

 9 25 24 
(c)

 
(c)

 

United Kingdom DNSIYC_2011 699 120 117 63 186 699 35 35 22 48 

1 to < 3 years Finland DIPP_2001_2009 245 162 160 91 236 245 45 44 29 59 

Germany VELS 174 169 167 107 250 174 36 36 26 48 

Italy INRAN_SCAI_2005_06 20 173 170 
(c)

 
(c)

 20 35 36 
(c)

 
(c)

 

United Kingdom DNSIYC_2011 663 168 164 97 247 663 40 39 28 53 

United Kingdom NDNS RollingProgramme Years 1–3 107 188 182 129 268 107 39 37 29 54 

3 to < 10 years Finland DIPP_2001_2009 381 245 241 169 332 381 42 42 32 53 

France INCA2 239 215 205 118 329 239 34 33 25 48 

Germany EsKiMo 426 281 272 181 398 426 37 36 27 49 

Germany VELS 146 202 190 125 307 146 36 35 26 48 

Italy INRAN_SCAI_2005_06 94 249 238 161 366 94 34 32 24 49 

Netherlands DNFCS 2007–2010 231 248 241 151 371 231 29 29 19 41 

United Kingdom NDNS RollingProgramme Years 1–3 326 225 218 139 326 326 36 35 26 49 

10 to < 18 years Finland NWSSP07_08 136 344 327 201 501 136 43 43 28 59 

France INCA2 449 257 248 152 399 449 33 32 24 44 

Germany EsKiMo 197 292 282 180 439 197 36 36 26 49 

Italy INRAN_SCAI_2005_06 108 309 298 189 461 108 32 30 23 44 

Netherlands DNFCS 2007–2010 566 298 284 168 473 566 28 27 18 40 

United Kingdom NDNS RollingProgramme Years 1–3 340 259 253 153 405 340 32 31 23 45 

18 to < 65 years Finland FINDIET2012 585 402 391 227 602 585 44 43 31 60 

France INCA2 936 317 305 176 487 936 36 35 25 51 

Ireland NANS_2012 634 367 356 193 577 634 37 36 25 52 

Italy INRAN_SCAI_2005_06 1 068 357 347 214 529 1 068 40 38 27 59 

Netherlands DNFCS 2007–2010 1 023 388 372 218 597 1 023 35 34 22 51 

Sweden Riksmaten 2010 623 439 425 211 704 623 45 43 30 65 

United Kingdom NDNS RollingProgramme Years 1–3 560 321 312 170 511 560 37 36 24 52 
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Age Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n 
(a)

 Average Median P5 P95 n 
(a)

 Average Median P5 P95 

65 to < 75 years Finland FINDIET2012 210 360 351 202 544 210 45 44 30 62 

France INCA2 111 312 309 175 465 111 36 35 27 48 

Ireland NANS_2012 72 331 328 145 497 72 38 37 23 56 

Italy INRAN_SCAI_2005_06 133 357 351 190 514 133 41 39 30 59 

Netherlands DNFCS 2007–2010 91 342 336 214 488 91 38 37 26 53 

Sweden Riksmaten 2010 127 407 379 231 640 127 48 45 37 67 

United Kingdom NDNS RollingProgramme Years 1–3 75 330 328 152 514 75 39 38.3 26 56 

≥ 75 years France INCA2 40 285 279 
(c)

 
(c)

 40 37 35 
(c)

 
(c)

 

Ireland NANS_2012 34 295 275 
(c)

 
(c)

 34 38 40 
(c)

 
(c)

 

Italy INRAN_SCAI_2005_06 69 340 326 208 498 69 39 37 29 55 

Sweden Riksmaten 2010 42 388 376 
(c)

 
(c)

 42 46 46 
(c)

 
(c)

 

United Kingdom NDNS RollingProgramme Years 1–3 56 264 241 
(c)

 
(c)

 56 37 37 
(c)

 
(c)

 

P5, 5th percentile; P95, 95th percentile; DIPP, Type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of 

Infants and Young Children; EsKiMo, Ernährungsstudie als KIGGS-Modul; FINDIET, the national dietary survey of Finland; INCA, Étude Individuelle Nationale des Consommations 

Alimentaires; INRAN-SCAI, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; FC_PREGNANTWOMEN, food consumption of pregnant 

women in Latvia; NANS, National Adult Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie 

zur Ermittlung der Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln. 

(a): Number of individuals in the population group. 

(b): The proportions of breast-fed infants were 58 % in the Finnish survey, 40 % in the German survey, 44 % in the Italian survey and 21 % in the UK survey. Most infants were partially breast-

fed. For the Italian and German surveys, breast milk intake estimates were derived from the number of breastfeeding events recorded per day multiplied by standard breast milk amounts 

consumed on an eating occasion at different ages. For the UK survey, the amount of breast milk consumed was either directly quantified by the mother (expressed breast milk) or 

extrapolated from the duration of each breastfeeding event. As no information on the breastfeeding events was reported in the Finnish survey, breast milk intake was not taken into 

consideration in the intake estimates of Finnish infants. 

(c): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation, as the results may not be statistically robust (EFSA, 2011b) and, therefore, for these 

dietary surveys/age classes, the 5th and 95th percentile estimates will not be presented in the intake results. 
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Appendix D. Magnesium intake in females in different surveys according to age classes and country 

Age Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n 
(a)

 Average Median P5 P95 n 
(a)

 Average Median P5 P95 

< 1 year 
(b)

 Finland DIPP_2001_2009 252 72 73 14 132 251 45 43 27 81 

Germany VELS 75 95 94 55 141 75 33 33 21 43 

Italy INRAN_SCAI_2005_06 7 89 105 
(c)

 
(c)

 7 29 35 
(c)

 
(c)

 

United Kingdom DNSIYC_2011 670 108 103 53 176 670 35 35 21 50 

1 to < 3 years Finland DIPP_2001_2009 255 153 151 85 228 255 45 45 30 61 

Germany VELS 174 155 149 93 234 174 36 35 26 51 

Italy INRAN_SCAI_2005_06 16 166 168 
(c)

 
(c)

 16 35 34 
(c)

 
(c)

 

United Kingdom DNSIYC_2011 651 156 152 87 242 651 40 39 27 54 

United Kingdom NDNS RollingProgramme Years 1–3 78 174 167 99 278 78 38 38 26 51 

3 to < 10 years Finland DIPP_2001_2009 369 226 222 150 311 369 43 42 33 55 

France INCA2 243 199 197 128 286 243 36 34 26 51 

Germany EsKiMo 409 259 251 158 386 409 38 38 27 50 

Germany VELS 147 184 178 114 269 147 36 35 25 49 

Italy INRAN_SCAI_2005_06 99 238 234 158 353 99 33 32 25 51 

Netherlands DNFCS 2007–2010 216 225 217 138 341 216 28 28 18 40 

United Kingdom NDNS RollingProgramme Years 1–3 325 218 211 128 328 325 36 35 26 51 

10 to < 18 years Finland NWSSP07_08 170 292 285 166 443 170 44 44 31 60 

France INCA2 524 213 207 122 321 524 34 33 24 48 

Germany EsKiMo 196 278 275 172 395 196 37 37 27 48 

Italy INRAN_SCAI_2005_06 139 261 251 161 397 139 33 32 23 51 

Latvia FC_PREGNANTWOMEN_2011 
(d)

 12 384 394 
(c)

 
(c)

 12 39 40 
(c)

 
(c)

 

Netherlands DNFCS 2007–2010 576 253 250 154 371 576 29 29 18 41 

United Kingdom NDNS RollingProgramme Years 1–3 326 215 207 119 328 326 32 30 22 47 

18 to < 65 years Finland FINDIET2012 710 334 322 192 503 710 47 45 31 67 

France INCA2 1 340 254 245 141 403 1 340 40 38 27 59 

Ireland NANS_2012 640 276 264 150 428 640 38 37 24 54 

Italy INRAN_SCAI_2005_06 1 245 311 303 185 452 1 245 44 41 28 68 

Latvia FC_PREGNANTWOMEN_2011 
(d)

 990 353 338 226 532 990 42 40 30 60 

Netherlands DNFCS 2007–2010 1 034 302 290 174 469 1 034 37 36 23 57 

Sweden Riksmaten 2010 807 357 335 193 604 807 51 45 30 72 

United Kingdom NDNS RollingProgramme Years 1–3 706 258 252 133 406 706 39 37 25 58 
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Age Country Survey Intake expressed in mg/day Intake expressed in mg/MJ 

n 
(a)

 Average Median P5 P95 n 
(a)

 Average Median P5 P95 

65 to < 75 years Finland FINDIET2012 203 304 299 182 457 203 50 49 34 69 

France INCA2 153 241 239 142 348 153 39 38 29 52 

Ireland NANS_2012 77 297 287 162 445 77 44 43 27 60 

Italy INRAN_SCAI_2005_06 157 298 293 181 434 157 44 42 30 65 

Netherlands DNFCS 2007–2010 82 308 291 187 441 82 43 40 28 66 

Sweden Riksmaten 2010 168 343 330 206 528 168 49 48 37 62 

United Kingdom NDNS RollingProgramme Years 1–3 91 263 254 141 401 91 44 42 28 74 

≥ 75 years France INCA2 44 232 232 
(c)

 
(c)

 44 39 37 
(c)

 
(c)

 

Ireland NANS_2012 43 280 288 
(c)

 
(c)

 43 45 42 
(c)

 
(c)

 

Italy INRAN_SCAI_2005_06 159 282 274 184 423 159 43 40 30 69 

Sweden Riksmaten 2010 30 347 334 
(c)

 
(c)

 30 51 47 
(c)

 
(c)

 

United Kingdom NDNS RollingProgramme Years 1–3 83 267 254 163 417 83 44 42 28 65 

P5, 5th percentile; P95, 95th percentile; DIPP, Type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of 

Infants and Young Children; EsKiMo, Ernährungsstudie als KIGGS-Modul; FINDIET, the national dietary survey of Finland; INCA, Étude Individuelle Nationale des Consommations 

Alimentaires; INRAN-SCAI, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; FC_PREGNANTWOMEN, food consumption of pregnant 

women in Latvia; NANS, National Adult Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie 

zur Ermittlung der Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln. 

(a): Number of individuals in the population group. 

(b): The proportions of breast-fed infants were 58 % in the Finnish survey, 40 % in the German survey, 44 % in the Italian survey and 21 % in the UK survey. Most infants were partially breast-

fed. For the Italian and German surveys, breast milk intake estimates were derived from the number of breastfeeding events recorded per day multiplied by standard breast milk amounts 

consumed on an eating occasion at different ages. For the UK survey, the amount of breast milk consumed was either directly quantified by the mother (expressed breast milk) or 

extrapolated from the duration of each breastfeeding event. As no information on the breastfeeding events was reported in the Finnish survey, breast milk intake was not taken into 

consideration in the intake estimates of Finnish infants. 

(c): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation, as the results may not be statistically robust (EFSA, 2011b) and, therefore, for these 

dietary surveys/age classes, the 5th and 95th percentile estimates will not be presented in the intake results. 

(d): Pregnant women only. 
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Appendix E. Minimum and maximum percentage contribution of different food groups (FoodEx2 level 1) to magnesium intake in males 

Food groups Age 

 < 1 year 1 to < 3 years 3 to < 10 years 10 to < 18 years 18 to < 65 years 65 to < 75 years ≥ 75 years 

Additives, flavours, baking and processing aids < 0.1 < 0.1–0.1 0–0.2 0–0.3 0–0.1 0 0 

Alcoholic beverages < 0.1 < 0.1 < 0.1 < 0.1–1.7 3.7–10.5 3–8.5 2.8–6.8 

Animal and vegetable fats and oils < 0.1–0.3 < 0.1–0.4 0.1–0.6 0.1–0.6 0.1–0.5 0.1–0.5 0.1–0.5 

Coffee, cocoa, tea and infusions < 0.1–0.4 < 0.1–3.9 1.3–10.3 2–8.2 5.6–23.4 8–22.6 7.9–19.4 

Composite dishes 0.1–3.5 0.3–5.9 0.1–5.9 0.3–8.6 0.5–8.3 0.6–7.6 0.4–7.6 

Eggs and egg products < 0.1–0.2 0.2–0.6 0.2–0.9 0.2–0.9 0.2–0.9 0.2–0.9 0.3–0.8 

Fish, seafood, amphibians, reptiles and invertebrates < 0.1–0.4 0.2–3.1 0.3–3.1 0.3–3 0.7–2.7 0.9–3.7 2.2–4.1 

Food products for young population 20.6–46.1 2.6–11 0.2–0.7 < 0.1–0.1 < 0.1 – – 

Fruit and fruit products 3.4–14.3 8.9–10.2 3.8–6.8 2.7–4.9 2.6–5.2 3.9–7.6 4.8–7 

Fruit and vegetable juices and nectars 0.3–1.7 0.8–3.9 2.1–5.7 1.9–5.3 0.7–3.3 0.3–2.6 0.5–2.1 

Grains and grain-based products 4.6–19 24–29.9 22.8–39.5 26.5–40.8 21.8–33.6 21.2–36.9 21.5–39.9 

Human milk < 0.1–16.1 < 0.1–0.6 – – – – – 

Legumes, nuts, oilseeds and spices 0.7–2.4 1.4–3.8 1.6–5.6 2–5.1 2.3–5.7 2.4–6.5 1.6–3.8 

Meat and meat products 0.4–3.8 3.1–6.5 4.8–9.1 5.6–11.2 5.9–11 5.7–10.1 5–9.3 

Milk and dairy products 8.5–15.5 21.5–27.6 14.7–30.1 11.2–25.3 7.4–15.1 6.7–14.4 9.3–12 

Products for non-standard diets, food imitates and food 

supplements or fortifying agents 

0.1–0.6 0–0.6 < 0.1–1 0.1–0.8 < 0.1–2.2 < 0.1–0.5 < 0.1–1.5 

Seasoning, sauces and condiments 0.1–0.4 0.6–2.4 0.2–2.1 0.2–2.3 0.2–2.2 0.2–2.3 0.2–2.6 

Starchy roots or tubers and products thereof, sugar plants 0.6–11.9 2.9–10.4 4.4–9.1 5.3–11 3.6–9.7 3.7–11.1 4.8–10.7 

Sugar, confectionery and water-based sweet desserts < 0.1–0.3 0.2–4.1 2.1–5.7 2.3–6 0.8–2.4 0.3–1.8 0.3–2.1 

Vegetables and vegetable products 1.1–8.7 2.5–5.9 3–8.4 2.9–10.7 2.2–11.2 2.4–12.6 2.9–10.7 

Water and water-based beverages 1.3–17.5 2.5–6.9 1.9–7 2.6–7.9 1.8–6.2 1.2–5.6 1.2–5.9 

“–” means that there was no consumption event of the food group for the age and sex group considered, while “0” means that there were some consumption events, but that the food group does 

not contribute to magnesium intake in the age and sex group considered. 
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Appendix F. Minimum and maximum percentage contribution of different food groups (FoodEx2 level 1) to magnesium intake in females 

Food groups Age 

 < 1 year 1 to < 3 years 3 to < 10 years 10 to < 18 years 18 to < 65 years 65 to < 75 years ≥ 75 years 

Additives, flavours, baking and processing aids < 0.1 0–0.1 0–0.2 0–0.2 0–0.1 0 0 

Alcoholic beverages < 0.1 < 0.1 < 0.1 < 0.1–0.3 < 0.1–3.9 0.6–3.3 1.2–1.9 

Animal and vegetable fats and oils < 0.1–0.3 0.1–0.4 0.1–0.6 0.1–0.6 0.1–0.5 0.1–0.5 0.1–0.5 

Coffee, cocoa, tea and infusions < 0.1–0.4 0.1–5 0.4–11.2 2.7–8.2 5.3–23.4 11.5–22.1 9.9–22 

Composite dishes < 0.1–1.9 0.3–5.7 0.1–5.9 0.4–9 0.5–8.6 0.3–9.1 0.5–7.8 

Eggs and egg products < 0.1–0.2 0.2–0.6 0.3–1.3 0.1–1 0.3–0.8 0.3–0.8 0.3–0.9 

Fish, seafood, amphibians, reptiles and invertebrates 0–0.4 0.1–3.5 0.2–2.5 0.3–4 0.7–2.8 0.8–3.7 1.7–3.4 

Food products for young population 20.1–51.9 2.3–11.1 < 0.1–0.4 < 0.1–0.1 < 0.1 –
 

< 0.1 

Fruit and fruit products 7.5–12.7 6.4–9.5 4.1–7.4 3.5–10.4 4.1–7.6 5.8–9.5 5.8–9.3 

Fruit and vegetable juices and nectars 0.1–1.3 0.8–3.8 2.1–5.1 1.8–5.3 0.8–2.8 0.8–2.3 0.8–2.1 

Grains and grain-based products 12.9–18.9 23.4–34 21.7–38.6 25.6–38.9 20.2–35.4 18.9–35.5 17–38.5 

Human milk < 0.1–6.8 < 0.1–0.5 – – – – – 

Legumes, nuts, oilseeds and spices 0.6–3 1.3–4.1 1.9–4.7 2.2–4.5 2.5–6.5 2.5–5.1 2.2–4.9 

Meat and meat products 0.7–3.2 3.1–5.3 4.3–9.5 5.3–10.1 5.3–9 4.4–8.8 4–8.4 

Milk and dairy products 4.6–21.8 20.4–31.2 14.7–30.3 10.1–22 8.5–15.7 8.4–14.5 10.2–13.1 

Products for non-standard diets, food imitates and food 

supplements or fortifying agents 

< 0.1–0.4 < 0.1–0.6 0–1.3 < 0.1–1 0.1–3.8 0.2–0.9 < 0.1–1.8 

Seasoning, sauces and condiments 0.2–0.5 0.2–0.8 0.4–2.1 0.1–2.4 0.2–2.4 0.2–3.1 0.3–2.9 

Starchy roots or tubers and products thereof, sugar plants 2.4–11.5 4.8–9.1 4.9–9.8 5–11 3.5–9.9 4.2–8.3 4–7.6 

Sugar, confectionery and water-based sweet desserts < 0.1–1.2 0.2–3.7 2.1–6.2 2.6–6.1 0.8–7.6 0.4–2 0.4–2.3 

Vegetables and vegetable products 3.3–9.4 2.2–6.6 3.3–8.5 3.4–11 3.4–12.1 3.3–13.1 3.9–12.7 

Water and water-based beverages 1.5–10.8 2.5–7.7 1.9–7 1.6–7.9 1.3–7.5 1.7–7 1.7–7.5 

“–” means that there was no consumption event of the food group for the age and sex group considered, while “0” means that there were some consumption events, but that the food group does 

not contribute to magnesium intake in the age and sex group considered. 
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Appendix G. Balance studies in adults with adaptation periods of ≥ 12 days 

Reference Number of 

subjects 

Characteristics Experimental 

period 

Data collection 

for balance 

Magnesium intake 

(mg/day unless 

otherwise indicated), 

mean ± standard error 

Balance (mg/day), 

mean ± standard error 

Comments 

Andersson et 

al. (1983) 

6 subjects. 1 

woman, 5 

men  
 

25–55 years Three 

consecutive 24-

day periods, 12 

days of 

adaptation 

Daily collection 

during final 12 

days of each 

dietary period, 

urine and faecal 

losses 

considered 

A: 236 ± 29/224 ± 29
 (a, b)

 

B: 309 ± 19/309 ± 19 
(a, b)

 

C: 403 ± 19/403 ± 19
 (a,b)

 

Duplicate diet analysis 

A: –9.7 ± 26.7/–19.4 ± 19.4 
(a, b)

 

B: –34.0 ± 19.4/–26.7 ± 26.7 
(a,b)

 

C: –19.4 ± 24.3/–14.6 ± 12.2 
(a,b)

  

Subjects housed in a 

metabolic ward; periods 

differed by the type of 

bread providing 3.3 (A), 

10.9 (B) or 18.7 g (C) of 

non-starch 

polysaccharides/day and 

about 2.1–2.3 mmol 

phytate/day, mean total 

fibre intake 16.1 (A), 

23.7 (B) or 31.5 (C) 

g/day  

Hunt and 

Johnson 

(2006) 

150 women, 

93 men  

 

Women: 19–77 

years 

Men: 19–65 

years 

At least 18 days 

including 

balance, and at 

least 12 days of 

adaptation 

(median 31 

days) 

Final 6–14 

days, urine and 

faecal losses 

considered 

Intake 84–598, including 

supplemental magnesium 

in some studies 

Duplicate diet analysis 

165 mg/day (null balance) Pooled analysis of 27 

studies (664 data points) 

carried out from 1976 to 

2001 in a metabolic ward 

under strict supervision 

of subjects; studies with 

supplements used Mg 

gluconate in addition to 

the diet, except for one 

study that used Mg 

citrate dibasic 

Fibre intake ≈ 3.5–

20 g/day 
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Reference Number of 

subjects 

Characteristics Experimental 

period 

Data collection 

for balance 

Magnesium intake 

(mg/day unless 

otherwise indicated), 

mean ± standard error 

Balance (mg/day), 

mean ± standard error 

Comments 

Kelsay and 

Prather 

(1983) 

12 men 34–58 years, 61–

97 kg 

4 weeks During weeks 3 

and 4, urine and 

faecal losses 

considered 

A: 300 ± 11/308 ± 10 
(b)

 

B: 375 ± 10/350 ± 7 
(b)

 

C: 346 ± 10/326 ± 10 
(b)

 

Duplicate diet analysis
 

A: –20 ± 14/20 ± 14 
(b)

  

B: 28 ± 10/–10 ± 13 
(b)

  

C: 21 ± 5/18 ± 13 
(b)

 

Subjects housed in a 

metabolic ward during 

the week, but no 

supervision on weekends; 

diets were low fibre with 

spinach (A), higher fibre 

with spinach (B) and 

higher fibre without 

spinach (C); when 

pooling data for weeks 3 

and 4, diet had no effect 

on magnesium balance 

Kelsay et al. 

(1979) 

12 men 37–58 years 26 days Last 7 days, 

urine and faecal 

losses 

considered 

356 ± 10 (low-fibre diet)  

322 ± 12 (high-fibre diet) 

Duplicate diet analysis 

28 ± 17 (low-fibre diet)  

–32 ± 10 (high-fibre diet) 

Sources of fibre in the 

high-fibre diet were fruits 

and vegetables 

Lakshmanan 

et al. (1984) 

18 women, 16 

men 

20–53 years 1 year 1 week per 

season, four 

collection 

periods in total, 

urine and faecal 

losses 

considered  

234 (women), 

323 (men), 

0.14 mg/kcal per day 

(both sexes),  

4.3 mg/kg body weight 

per day (men)  

4.15 mg/kg body weight 

per day (women) 

Duplicate diet analysis 

–25 mg/day (women) 

–32 mg/day (men) 

Self-selected diets, free-

living subjects 

Effect of magnesium, 

calcium, phosphorus, 

protein and fibre intakes 

on urinary and faecal 

excretion and balance 

tested separately in men 

and women, with no 

consistent influence 

noted  

Mahalko et 

al. (1983) 

10 men 19–64 years, 

76 ± 11 kg 
(a)

 

28 days, 16 

days of 

adaptation 

Last 12 days, 

urine and faecal 

losses 

considered 

229 ± 24 
(a)

 

258 ± 24 
(a)

 

Duplicate diet analysis 

13 ± 30 (65 g protein/day) 
(a)

 

17 ± 36 (94 g protein/day) 
(a)

 

Subjects housed in a 

metabolic ward; the 

study was done at USDA 

but not included in the 

pooled analysis of Hunt 

and Johnson (2006) 
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Reference Number of 

subjects 

Characteristics Experimental 

period 

Data collection 

for balance 

Magnesium intake 

(mg/day unless 

otherwise indicated), 

mean ± standard error 

Balance (mg/day), 

mean ± standard error 

Comments 

Nielsen and 

Milne (2004) 

21 post-

menopausal 

women  

50–76 years, 

65.1 ± 9.5 kg 
(a)

 

2 dietary 

periods of 90 

days each, 12 

days of 

adaptation 

Last 78 days, 

urine and faecal 

losses 

considered 

328 (low Cu, low Zn) 

313 (low Cu, high Zn) 

334 (high Cu, low Zn) 

310 (high Cu, high Zn), 

180 mg/day as 

supplemental Mg 

gluconate 

Duplicate diet analysis 

23.1 (low Cu, low Zn) 

1.0 (low Cu, high Zn) 

26.0 (high Cu, low Zn) 

5.6 (high Cu, high Zn) 

Subjects housed in a 

metabolic ward, four 

diets combining high 

(3 mg) and low (1 mg) 

copper with high (53 mg) 

and low (3 mg) zinc 

intakes daily,  

high dietary zinc 

significantly decreased 

magnesium balance. The 

study was done at USDA 

but not included in the 

pooled analysis of Hunt 

and Johnson (2006)  

Schwartz et 

al. (1986) 

7 men 22–32 years 49 days in total, 

of which 21 

days of 

adaptation  

Complete 

faecal and urine 

collections 

were made 

from day 8 

657 ± 85 (weeks 2-4) 

719 ± 105 (weeks 5-7) 

Duplicate diet analysis 

-25 ± 16 
(a)

 (weeks 2-4) 

27 ± 19 
(a)

 (weeks 5-7)  

 

The objective was to 

determine apparent 

magnesium absorption in 

the presence of bran 

Schwartz et 

al. (1984) 

8 men 48–62 years, 55–

94 kg 

100–130 days, 

at least 30 days 

of adaptation 

Collection of 

urine and 

faeces 

throughout the 

study 

331–447 (range for the 

subjects throughout the 

study) 

6–48 (range) Subjects housed in a 

metabolic ward, study 

focused on magnesium 

absorption from four 

freeze-dried leafy 

vegetables incorporated 

into muffins  

Schwartz et 

al. (1978) 

4 men 48–75 years, 67–

83 kg 

146 days, at 

least 35 days of 

adaptation 

Days 66–76 

and 109–119, 

urine and faecal 

losses 

considered 

243–321, including 

50 mg/day of 

supplemental Mg oxide 

Individual balances from –44 to 

+20 (4 positive or null, 4 

negative) 

Subjects housed in a 

metabolic ward, 

objective of the study 

was magnesium 

absorption 
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Reference Number of 

subjects 

Characteristics Experimental 

period 

Data collection 

for balance 

Magnesium intake 

(mg/day unless 

otherwise indicated), 

mean ± standard error 

Balance (mg/day), 

mean ± standard error 

Comments 

Spencer et al. 

(1994) 

5 men 38–75 years Unclear, but at 

least 28 days of 

adaptation 

Unclear if more 

than 6 days, 

urine and faecal 

losses 

considered 

240 ± 24 (normal Ca) 

264 ± 26 (low Ca) 

Duplicate diet analysis; 

periods with supplemental 

Mg not considered here 

–26 ± 14 (normal Ca, 800 

mg/day) 

–23 ± 21 (low Ca, 240 mg/day) 

Subjects housed in a 

metabolic ward 

van Dokkum 

et al. (1983) 

10–12 men 

(10 in study A 

and 12 in 

study B) 

23 ± 2 years 
(a)

, 

67 ± 6 kg 
(a)

 

2 dietary 

periods of 20 

days each, 

preceded by 

adaptation 

periods of 8–16 

days 

20 days of each 

dietary period. 

Urine and 

faecal losses 

considered. 

Study A: 389 ± 34 (high 

fat diet) 
(a)

 

367 ± 25 (low fat diet) 
(a)

  

Study B: 312 ± 24 (low 

linoleic acid diet) 
(a)

 

319 ± 26 (high linoleic 

acid diet) 
(a)

 

Duplicate diet analysis 

16 ± 23 (high fat diet) 
(a) 

 

3 ± 15 (low fat diet) 
(a)

 

10 ± 15 (low linoleic acid diet) 
(a) 

7 ± 13 (high linoleic acid diet)
 (a)

 

 

The objective was to 

determine the influence 

of fat and linoleic acid on 

absorption and balance 

Wisker et al. 

(1991) 

12 women 22–28 years Three separate 

experiments 

each for 22 

days 

Last 6 days 

(from days 16 

to 22), urine 

and faecal 

losses 

considered 

252 ± 9 

245 ± 8 

243 ± 9 

Duplicate diet analysis 

7.3 ± 4.9 

4.9 ± 2.4 

–12 ± 4.9 

Comparison of low fibre 

(22.5 g/day and 1.1 g 

protein/kg body weight 

per day), high fibre/high 

protein (38.6 g/day and 

1.1 g protein/kg body 

weight per day) and high 

fibre/adequate protein 

(38.6 g/day and 0.8 g 

protein/kg body weight 

per day) 

USDA, US Department of Agriculture. Studies not included in this table because of adaptation periods of fewer than 12 days: Slavin and Marlett (1980); Greger and Baier (1983); Nishimuta et 

al. (2006); Nishimuta et al. (2012) and McDonald and Margen (1979). Study not included in this table because of short duration of adaptation and balance periods: Jones et al. (1967). 

(a): Mean value ± SD. 

(b): Values for 3rd/4th period of 6 or 7 days. 
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Appendix H. Balance studies in children 

Reference Number of 

subjects 

Age  

(years), 

mean ± standard 

deviation 

Experimental period Data collection for 

balance 

Magnesium intake 

(mg/day unless otherwise 

specified), 

mean ± standard deviation 

Balance (mg/day 

unless otherwise 

specified), 

mean ± standard 

deviation 

Comments 

Abrams et 

al. (1997) 

12 boys 10.9 ± 1.1  10 days Mg absorption 

studied using tracers. 

Balance calculated 

as the difference 

between dietary 

absorption and the 

sum of endogenous 

faecal and urinary 

excretion (means of 

the first 7 days of the 

study)  

261 ± 40 (6.4 ± 1.2 mg/kg 

per day) (range 194–321) 

15.6 ± 36.8 (boys) 11 out of 25 subjects 

were in negative balance 13 girls 12.3 ± 1.6  –0.9 ± 41.2 (girls) 

Andon et 

al. (1996) 

13 girls 11.3 ± 0.5  14 days First week of the 

study was 

considered as 

adaptation period. 

Samples from the 2
nd

 

week used to 

calculate magnesium 

balance  

Basal diet: 193 ± 39 19 ± 25 (basal diet) Balance was positive in 

all subjects with a 

magnesium intake 

> 5 mg/kg per day. 

Calcium intake had no 

effect on magnesium 

balance 

13 girls 11.3 ± 0.7 Basal diet plus Ca 

supplement: 199 ± 45  

22 ± 15 (basal diet plus 

Ca supplement) 

Greger et 

al. (1978) 

14 girls 12.5–14.5 (range) 30 days in total. 9 

days adaptation, 21 

days for experimental 

diets  

Meal and urine 

samples on a daily 

basis, faecal samples 

pooled for 6-day 

periods. Excreta not 

collected during the 

first 3 days of 

adaptation and 

experimental periods  

Adaptation: 196 ± 17 –5.0 ± 26.8 (adaptation) Magnesium intake via 

the metabolic diet was 

insufficient for most of 

the girls to maintain 

positive balances 

S0Z13.4: 190 ± 26 –5.6 ± 16.5 (S0Z13.4) 

S30Z7.4: 195 ± 29 –6.8 ± 10.4 (S30Z7.4) 

S30Z13.4: 195 ± 29  –1.8 ± 2.2 (S30Z13.4) 
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Reference Number of 

subjects 

Age  

(years), 

mean ± standard 

deviation 

Experimental period Data collection for 

balance 

Magnesium intake 

(mg/day unless otherwise 

specified), 

mean ± standard deviation 

Balance (mg/day 

unless otherwise 

specified), 

mean ± standard 

deviation 

Comments 

Schofield 

and 

Morrell 

(1960) 

35 girls 7–9  7 weeks Not reported  From 135.6 ± 2.5 to 

231.7 ± 12.7 in three 

different groups 

All balances positive 

(from 10.4 ± 6.4 to 

16.2 ± 8.6) 

Positive balances were 

maintained on low 

protein diets (17–

20 g/day) 

Schwartz 

et al. 

(1973) 

12 boys 13–14  Two 30-day periods 

(in subsequent years) 

with a constant 

protein intake, 

whereas Mg intake 

level changed after 15 

days of each 

experimental period 

10 days.  

First 5 days of each 

15-day dietary 

period regarded as 

adaptation period 

and excreta not 

collected  

LPLM: 4.3 ± 0.21 
(a)

  

LPHM: 14.5 ± 0.61 
(a)

 

HPLM: 4.1 ± 0.16 
(a)

 

HPHM: 13.1 ± 0.51 
(a)

 

–0.62 ± 0.07 (LPLM) 
(a)

 

0.88 ± 0.48 (LPHM) 
(a) 

 

0.19 ± 0.08 (HPLM) 
(a)

 

1.25 ± 0.26 (HPHM) 
(a)

 

Diets with either low or 

high amounts of protein 

(43 g/day or 93 g/day) or 

magnesium. Magnesium 

retention was 

significantly increased 

by consumption of the 

high-protein diet 

Sojka et al. 

(1997) 

5 girls 12–14  Two 21-day periods 

with 5-week intervals 

in between, with the 

first 7 days considered 

as adaptation 

Blood, urine and 

faecal samples were 

collected during last 

14 days  

800 mg Ca (control): 

305 ± 30  

13 ± 35 (control, 1 of 5 

negative)  

 

1 800 mg Ca (high Ca diet): 

286 ± 9  

 

–34 ± 48 (high Ca diet, 

4 of 5 negative) 

Ca, calcium; S0,Z13.4, 13.4 mg zinc and no soy; S30,Z13.4, 13.4 mg zinc and 30 % of meat replaced by soy; S30,Z7.4, 7.4 mg zinc and 30 % of meat replaced by soy; LPLM, low-protein, low-

magnesium diet; LPHM, low-protein, high-magnesium diet; HPLM, high-protein, low-magnesium diet; HPHM, high-protein, high-magnesium diet 

(a): mg/kg per day. 
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Appendix I. Characteristics of prospective cohort studies on magnesium intake and risk of diabetes mellitus type 2 (adapted from Dong et al. (2011)) 

Reference  Number of subjects, 

place of study 

(number of cases) 

Age (years) Duration 

(years) 

Median magnesium 

intake (highest vs. 

lowest, mg/day) 

Adjusted RR unless 

otherwise specified (95 % CI) 

Adjustment for potential confounders 

Hodge et al. 

(2004) 

31 641 adults, Australia 

(365) 

40–69 4 773 vs. 230 
(a)

 0.55 (0.32–0.97)  Age, BMI, sex, education, country of 

birth, family history, WHR, weight 

change, physical activity, and intakes of 

total energy and alcohol 

Hopping et al. 

(2010) 

75 512 adults, USA 

(8 587) 

45–75 14 370 vs. 260 
(b)

 Men: 0.77 (0.70–0.85) 

Women: 0.84 (0.76–0.93) 

BMI, physical activity, education, 

ethnicity and total energy intake 

Kao et al. (1999)  11 896 adults, USA 

(1 106) 

45–64 6 361 vs. 154 
(c)

 White: 1.08 (0.78–1.49) 

Black: 0.98 (0.57–1.72) 

Age, BMI, sex, education, family history, 

WHR, sports index, diuretic use, and 

intakes of alcohol, calcium and 

potassium 

Kim et al. (2010) 4 497 adults, USA 

(330) 

18–30 20 403 vs. 200 
(d)

 0.53 (0.32–0.86) Age, BMI, sex, ethnicity, study centre, 

education, smoking, physical activity, 

family history, systolic blood pressure, 

and intakes of total energy, alcohol, 

saturated fat and crude fibre 

Kirii et al. (2010) 17 592 adults, Japan 

(459) 

40–65 5 303 vs. 158 0.64 (0.44–0.94) Age, BMI, family history, smoking, 

hours of walking and sports participation, 

and intakes of total energy, alcohol, 

green tea and coffee 

Lopez-Ridaura et 

al. (2004) 

42 872 men, USA 

(1 333) 

40–75 11 457 vs. 270 0.72 (0.58–0.89) Age, BMI, family history, hypertension, 

hypercholesterolaemia, smoking, 

physical activity, and intakes of total 

energy, alcohol, glycaemic load, PUFA, 

TFA, processed meat and cereal fibre 

Lopez-Ridaura et 

al. (2004)  

85 060 women, USA 

(4 085) 

30–55 17 374 vs. 222 0.73 (0.65–0.82)  Age, BMI, family history, hypertension, 

hypercholesterolaemia, smoking, 

physical activity, and intakes of total 

energy, alcohol, glycaemic load, PUFA, 

TFA, processed meat and cereal fibre 

Meyer et al. 

(2000) 

35 988, USA 

(1 141) 

55–69 6 362 vs. 220 0.67 (0.55–0.82)  Age, BMI, education, smoking, WHR, 

physical activity, intakes of total energy, 

alcohol, whole grains and cereal fibre 



www.manaraa.com

Dietary Reference Values for magnesium 

 

EFSA Journal 2015;13(7):4186 61 

Reference  Number of subjects, 

place of study 

(number of cases) 

Age (years) Duration 

(years) 

Median magnesium 

intake (highest vs. 

lowest, mg/day) 

Adjusted RR unless 

otherwise specified (95 % CI) 

Adjustment for potential confounders 

Nanri et al. (2010) 59 791 adults, Japan 

(1 114) 

45–75 5 348 vs. 213 Men: 0.86 (0.63–1.16) 

Women: 0.92 (0.66–1.28) 

Age, BMI, study area, smoking, family 

history, leisure time physical activity, 

hypertension, and intakes of total energy, 

alcohol, coffee and calcium 

Schulze et al. 

(2007) 

25 067 adults, Germany 

(844) 

35–65 7 377 vs. 268 0.99 (0.78–1.26) Age, BMI, sex, education, sports activity, 

cycling, occupational activity, smoking, 

WC, and intakes of total energy, alcohol, 

carbohydrate, PUFA to SFA ratio, 

MUFA to SFA ratio and cereal fibre 

Song et al. (2004) 38 025 women, USA 

(918) 

≥ 45 6 399 vs. 252 0.89 (0.71–1.10) Age, BMI, family history, smoking, 

physical activity, and intakes of total 

energy and alcohol 

van Dam et al. 

(2006) 

41 186 women, USA 

(1 964) 

21–69 6 244 vs. 115 0.65 (0.54–0.78)  Age, BMI, education, family history, 

smoking, physical activity, and intakes of 

total energy, alcohol, coffee, sugar-

sweetened drinks, red meat, processed 

meat and calcium 

Villegas et al. 

(2009) 

64 191 women, China 

(2 270) 

40–70 6.9 318 vs. 214 0.80 (0.68–0.93) Age, BMI, WHR, smoking, physical 

activity, income, education, occupation, 

hypertension, and intakes of total energy 

and alcohol 

Weng et al. 

(2012) 

1 604 adults, Taiwan 

(141) 

38–63 4.6 406 vs. 212 2.61 (1.42–4.79) 
(e)

 Age, sex, age–sex interaction, caloric 

intake, residential area, family history of 

diabetes, BMI, central obesity, education, 

smoking habits, current drinking habits, 

frequency of activity, hypertension, 

hypercholesterolaemia, 

hypertriglyceridaemia and low high-

density lipoprotein cholesterol  

BMI, body mass index; CI, confidence interval; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; RR, relative risk; SFA, saturated fatty acid; TFA, trans fatty acid; WC, 

waist circumference; WHR, waist to hip ratio. 

(a): The primary paper reports median magnesium intake (g/day) across glycaemic index quartiles. 

(b): The primary paper reports median magnesium intake expressed as g/4 184 kJ per day. 

(c): The primary paper reports mean magnesium intake expressed as mg/4.2 kJ per day. 

(d): The primary paper reports median magnesium intake expressed as mg/1 000 kcal per day. 

(e): Hazard ratio using the highest quintile as the reference category. 
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ABBREVIATIONS 

Afssa Agence française de sécurité sanitaire des aliments 

AI Adequate Intake 

AR Average Requirement 

BMC bone mineral content 

BMD bone mineral density 

BMI body mass index 

CI confidence interval 

COMA Committee on Medical Aspects of Food Policy 

CV coefficient of variation 

CVD cardiovascular disease 

Da dalton 

D-A-CH Deutschland–Austria–Confoederatio Helvetica 

DBP diastolic blood pressure 

DH UK Department of Health 

DIPP Type 1 Diabetes Prediction and Prevention 

DNFCS Dutch National Food Consumption Survey 

DNSIYC Diet and Nutrition Survey of Infants and Young Children 

DRV Dietary Reference Value  

EAR Estimated Average Requirement 

EsKiMo Ernährungsstudie als KIGGS-Modul 

EU European Union 

FAO Food and Agriculture Organization 

FINDIET National dietary survey of Finland 

INCA Étude Individuelle Nationale des Consommations Alimentaires 

INRAN-SCAI Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio 

sui Consumi Alimentari in Italia 

IOM US Institute of Medicine of the National Academy of Sciences 
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NANS National Adult Nutrition Survey 

NDNS National Diet and Nutrition Survey 

NNR Nordic Nutrition Recommendations 

NOAEL No Observed Adverse Effect Level 

NWSSP Nutrition and Wellbeing of Secondary School Pupils 

PRI Population Reference Intake 

RI Recommended Intake 

RDA Recommended Dietary Allowance 

RR relative risk 

SBP systolic blood pressure 

SCF Scientific Committee for Food 

UL Tolerable Upper Intake Level 

VELS Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme von 

Säuglingen und Kleinkindern für die Abschätzung eines akuten 

Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln 

WHO World Health Organization 
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